In the recent years,a dramatic boost of the research is observed at the junction of photonics,machine learning and artifi-cial intelligence.A new methodology can be applied to the description of a variety of photonic ...In the recent years,a dramatic boost of the research is observed at the junction of photonics,machine learning and artifi-cial intelligence.A new methodology can be applied to the description of a variety of photonic systems including optical waveguides,nanoantennas,and metasurfaces.These novel approaches underpin the fundamental principles of light-matter interaction developed for a smart design of intelligent photonic devices.Artificial intelligence and machine learn-ing penetrate rapidly into the fundamental physics of light,and they provide effective tools for the study of the field of metaphotonics driven by optically induced electric and magnetic resonances.Here we overview the evaluation of meta-photonics induced by artificial intelligence and present a summary of the concepts of machine learning with some specif-ic examples developed and demonstrated for metasystems and metasurfaces.展开更多
We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of opt...We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces,including surface plasmon resonances,Mie resonances,lattice-guided modes,and bound states in the continuum.We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.展开更多
The exploration of optical and photonic phenomena,particularly the modulation of pulse signals and the ultrafast control of light fields at extreme temporal and spatial scales,substantially enhances our understanding ...The exploration of optical and photonic phenomena,particularly the modulation of pulse signals and the ultrafast control of light fields at extreme temporal and spatial scales,substantially enhances our understanding of light-matter interactions and broadens the scope of potential applications inspired by metamaterials and metasurfaces.In this perspective,we highlight advancements in ultrafast metaphotonics by introducing ultrafast pulse shaping and control using metadevices.We begin with a detailed exposition of the principles of metasurfaces and evaluate their role in manipulating light fields in high-frequency and terahertz bands,emphasizing the importance of metasurfaces in ultrafast optics.We then present several methods for controlling the output response of metadevices using external physical fields or phase-change materials to achieve active metadevices.Finally,we anticipate the prospects of this field in terms of fundamental research and practical applications.The integration of these 2 disciplines will drive vibrant developments across multiple fields,including biology,chemistry,and materials science.展开更多
Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ...Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.展开更多
基金supported by Priority 2030 Federal Academic Leadership Programsupport from the Foundation for the Advancement of Theoretical Physics and Mathematics“BASIS”+4 种基金support from the Australian Research Council(grant CE170100012)support from the Strategic Fund of the Australian National UniversityThe Australian Research Council(grants DP200101168 and DP210101292)the Russian Science Foundation(grant 21-72-30018)the US Army International Office(grant FA5209-21-P0034)。
文摘In the recent years,a dramatic boost of the research is observed at the junction of photonics,machine learning and artifi-cial intelligence.A new methodology can be applied to the description of a variety of photonic systems including optical waveguides,nanoantennas,and metasurfaces.These novel approaches underpin the fundamental principles of light-matter interaction developed for a smart design of intelligent photonic devices.Artificial intelligence and machine learn-ing penetrate rapidly into the fundamental physics of light,and they provide effective tools for the study of the field of metaphotonics driven by optically induced electric and magnetic resonances.Here we overview the evaluation of meta-photonics induced by artificial intelligence and present a summary of the concepts of machine learning with some specif-ic examples developed and demonstrated for metasystems and metasurfaces.
基金supported by the Australian Research Council(Grant Nos.DP200101168 and DP210101292)the International Technology Center Indo-Pacific(ITC IPAC)via Army Research Office(contract FA520923C0023).
文摘We review the physics and some applications of photonic structures designed for the realization of strong nonlinear chiroptical response.We pay much attention to the recent strategy of utilizing different types of optical resonances in metallic and dielectric subwavelength structures and metasurfaces,including surface plasmon resonances,Mie resonances,lattice-guided modes,and bound states in the continuum.We summarize earlier results and discuss more recent developments for achieving large circular dichroism combined with the high efficiency of nonlinear harmonic generation.
基金supported by the National Program on Key Basic Research Project of China(2022YFA1404300)National Natural Science Foundation of China(nos.12325411,62288101,and 11774162)+4 种基金The Open Research Fund of the State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(SKLST202218)Fundamental Research Funds for the Central Universities(020414380175)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0096)G.H.acknowledges the Nanyang Assistant Professorship Start-up Grant,Ministry of Education(Singapore)under AcRF TIER1(RG61/23)National Research Foundation of Singapore through the Competitive Research Program(NRF-CRP29-2022-0003).
文摘The exploration of optical and photonic phenomena,particularly the modulation of pulse signals and the ultrafast control of light fields at extreme temporal and spatial scales,substantially enhances our understanding of light-matter interactions and broadens the scope of potential applications inspired by metamaterials and metasurfaces.In this perspective,we highlight advancements in ultrafast metaphotonics by introducing ultrafast pulse shaping and control using metadevices.We begin with a detailed exposition of the principles of metasurfaces and evaluate their role in manipulating light fields in high-frequency and terahertz bands,emphasizing the importance of metasurfaces in ultrafast optics.We then present several methods for controlling the output response of metadevices using external physical fields or phase-change materials to achieve active metadevices.Finally,we anticipate the prospects of this field in terms of fundamental research and practical applications.The integration of these 2 disciplines will drive vibrant developments across multiple fields,including biology,chemistry,and materials science.
基金supported by the National Natural Science Foundation of China(62035003 and 62235009).
文摘Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.