期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种引入元路径相似性度量的材料实体检索方法
1
作者 黄华泽 胡紫璇 +3 位作者 游进国 黄星瑞 陶静梅 易健宏 《计算机应用研究》 CSCD 北大核心 2024年第9期2781-2786,共6页
近年来,随着材料数据的积累以及“材料基因组计划”的普及,面对大量需要处理和管理的材料数据,快速准确地检索并获取相应信息已成为一个重要问题。传统的检索方法由于仅能查询某一材料的相关信息,并且存在检索结果不全面、无法处理复杂... 近年来,随着材料数据的积累以及“材料基因组计划”的普及,面对大量需要处理和管理的材料数据,快速准确地检索并获取相应信息已成为一个重要问题。传统的检索方法由于仅能查询某一材料的相关信息,并且存在检索结果不全面、无法处理复杂语义关系等问题,难以获取相似程度较高的材料。为了快速、准确地找到与某种材料相似的材料,提出可度量不同节点的加权材料相似度计算模型WM-PathSim。首先,使用metapath2vec学习材料节点的嵌入表示;其次,引入TFIDF-CBOW模型学习材料路径实例的存在概率,进而计算不同元路径的权重;最后,加权求和符合条件的元路径得到最后的相似性度量,来预测不同材料之间的相似程度。在真实数据集上的结果表明,在不同的路径关系中,所提模型相比于基线方法在性能上有较大提升,其AUC和precision指标分别提升了0.37~5.02百分点和1~7.33百分点,说明所提模型得到材料间的相似程度更加准确和有效,从而能够获得相似材料。 展开更多
关键词 材料相似度 metapath2vec TFIDF-CBOW 元路径权重
在线阅读 下载PDF
基于交互属性增强的电影评分预测
2
作者 许星波 张明西 +1 位作者 赵瑞 朱衍熹 《软件导刊》 2024年第1期182-189,共8页
电影评分预测旨在预测用户对未评价的电影可能赋予的评分,是推荐系统、电影分类等现实应用的重要依据。现有预测方法主要关注用户与电影的交互信息和文本信息表示,对属性特征的直接表示考虑较少。为此,提出一种基于交互属性增强的电影... 电影评分预测旨在预测用户对未评价的电影可能赋予的评分,是推荐系统、电影分类等现实应用的重要依据。现有预测方法主要关注用户与电影的交互信息和文本信息表示,对属性特征的直接表示考虑较少。为此,提出一种基于交互属性增强的电影评分预测模型。首先,考虑使用属性节点在网络中的嵌入向量表示不同的属性特征信息,根据数据间的交互和从属关系构建电影信息网络,利用Metapath2vec算法获得属性节点的嵌入向量,将各属性特征转换为具有不同元路径结构信息及语义信息的向量表示。然后,将用户和电影的属性特征向量输入双塔模型,与各自ID特征向量交互融合,以探索不同属性偏好对用户及电影的影响。最后,得到用户和电影特征向量,通过点积实现用户对电影的评分预测。在公开数据集上的结果表明,所提模型相较于传统模型预测准确性更高,证明了模型的有效性。 展开更多
关键词 电影评分预测 Metapath2vec 双塔模型 交互属性
在线阅读 下载PDF
Metarelation2vec:A Metapath-Free Scalable Representation Learning Model for Heterogeneous Networks 被引量:1
3
作者 Lei Chen Yuan Li +1 位作者 Yong Lei Xingye Deng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期553-575,共23页
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapath... Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapaths consisting of multiple,simple metarelations must be driven by domain experts.These sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this problem.Specifically,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given metapaths.Thereafter,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node type.Next,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link type.Finally,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the models.Extensive experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model. 展开更多
关键词 metarelation random walk heterogeneous network metapath representation learning
原文传递
Incorporating metapath interaction on heterogeneous information network for social recommendation
4
作者 Yanbin JIANG Huifang MA +2 位作者 Xiaohui ZHANG Zhixin LI Liang CHANG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第1期33-48,共16页
Heterogeneous information network(HIN)has recently been widely adopted to describe complex graph structure in recommendation systems,proving its effectiveness in modeling complex graph data.Although existing HIN-based... Heterogeneous information network(HIN)has recently been widely adopted to describe complex graph structure in recommendation systems,proving its effectiveness in modeling complex graph data.Although existing HIN-based recommendation studies have achieved great success by performing message propagation between connected nodes on the defined metapaths,they have the following major limitations.Existing works mainly convert heterogeneous graphs into homogeneous graphs via defining metapaths,which are not expressive enough to capture more complicated dependency relationships involved on the metapath.Besides,the heterogeneous information is more likely to be provided by item attributes while social relations between users are not adequately considered.To tackle these limitations,we propose a novel social recommendation model MPISR,which models MetaPath Interaction for Social Recommendation on heterogeneous information network.Specifically,our model first learns the initial node representation through a pretraining module,and then identifies potential social friends and item relations based on their similarity to construct a unified HIN.We then develop the two-way encoder module with similarity encoder and instance encoder to capture the similarity collaborative signals and relational dependency on different metapaths.Extensive experiments on five real datasets demonstrate the effectiveness of our method. 展开更多
关键词 heterogeneous information network social reco-mmender system metapath interaction attention mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部