Metal-complexed chiral macrocyclic architectures have attracted increasing research interests in circularly polarized luminescence owing to their distinctive structural and functional attributes.The method of metal co...Metal-complexed chiral macrocyclic architectures have attracted increasing research interests in circularly polarized luminescence owing to their distinctive structural and functional attributes.The method of metal coordination has emerged as a robust methodology for chirality induction in many systems.In this work,we engineered two rigid and flexible chiral organic ligands(L_(1) and L_(2))by synergizing the inherent planar chirality of pillar[5]arenes with tailored metal-coordination moieties.They demonstrate versatile coordination capabilities toward both 3d-and 4f-block metals,enabling modulation of luminescent characteristics with blue,green and red emissions.Four planar chiral complexes exhibiting CPL activity were synthesized through systematic coordination of L_(1)/L_(2) with Zn^(2+),Eu^(3+),and Tb^(3+).The coordination processes effectively rigidify molecular conformations,leading to an enhanced CPL performance.Particularly,the Tb-L_(2) complex displays superior lanthanide-centered emission with a fluorescence quantum yield of~55%and an emission dissymmetry factor glum=5.5×10^(-3).By engineering the substitution on pillar[5]arene scaffolds,we have established a metal-coordination platform with CPL characteristics,which paves the way in the design of new metal-based luminescent materials.展开更多
Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an opt...Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an optimal balance among these properties remains a significant challenge.Herein,through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate(TEEA)and vinylimidazole(VI)in the presence of polyethylene glycol(PEG;Mn=400),tough P(TEEA-co-VI)/PEG elastomers with multiple functionalities were prepared,in which P(TEEA-co-VI)was dynamically cross-linked by imidazole-Zn^(2+)metal coordination crosslinks,and physically blended with PEG as polymer electrolyte to form a homogeneous mixture.Notably,Zn^(2+)has a negligible impact on the polymerization process,allowing for the in situ formation of numerous imidazole-Zn^(2+)metal coordination crosslinks,which can effectively dissipate energy upon stretching to largely reinforce the elastomers.The obtained P(TEEA-co-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m^(-3) with a high tensile strength of 3.3 MPa and a large elongation at break of 645%,along with outstanding self-healing capabilities due to the dynamic coordination crosslinks.Moreover,because of the miscibility of PEG with PTEEA copolymer matrix,and Li+can form weak coordination interactions with the ethoxy(EO)units in PEG and PTEEA,acting as a bridge to integrate PEG into the elastomer network.The resulted P(TEEA-co-VI)/PEG elastomers showed high transparency(92%)and stable high conductivity of 1.09×10_(-4) S·cm^(-1).In summary,the obtained elastomers exhibited a well-balanced combination of high toughness,high ionic conductivity,excellent self-healing capabilities,and high transparency,making them promising for applications in flexible strain sensors.展开更多
Though the photo-physical properties of free base porphyrin are attractive, there are still problems for the materials with weak and narrow range absorption of visible light. The unsymmetrical neo-confused porphyrin d...Though the photo-physical properties of free base porphyrin are attractive, there are still problems for the materials with weak and narrow range absorption of visible light. The unsymmetrical neo-confused porphyrin derivatives were introduced as novel materials for the improvement of photo-chemical and photo-physical properties. The density function theory(DFT)and time dependent density function theory(TDDFT) were applied to calculate the absorption spectrum of unsymmetrical neo-confused porphyrin(N-CP) and metal-coordinated N-CP in various solutions. The Ni and Zn coordinated neo-confused porphyrin dipole moment values are smaller than the values of prototype porphyrin(Pro P) and N–CP. According to the electrophilicity index ω, Ni coordinated N–CP(Ni–N–CP) is susceptible to the polarity of solvents, while the Zn coordinated derivative(Zn–N–CP) is more immune to the solvent environment. Unlike the Gouterman's four frontier orbital model of common porphyrin materials, the electron transitions of N–CPs and metalcoordinated N–CPs from H–2 or lower molecular orbitals also contribute to ultraviolet and visible absorption. Most of oscillator strength f values of Zn–N–CP are significantly higher than the values of Ni–N–CP, which reflects the higher absorption intensity of Q and Soret bands. The maximum wavelength at 702.2 nm in vacuum drew our attention to the novel material. The broad absorption range, intense red-shifted Q band and higher stability in solvents suggest that N–CPs, especially Zn–N–CP, can be one class of new candidate dye-sensitized materials.展开更多
The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in s...The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks.展开更多
High monomer concentration is a requisite for engendering the aggregation-induced emssion(AIE)phenomenon as well as the formation of supramolecular polymers.Therefore,this is supposed to ensure the generation of AIE s...High monomer concentration is a requisite for engendering the aggregation-induced emssion(AIE)phenomenon as well as the formation of supramolecular polymers.Therefore,this is supposed to ensure the generation of AIE supramolecular polymers,wherein the monomer soluability takes effect.Nevertheless,parts of supramolecular monomers are considered as poessessing different soluability towards the same sovlent,through which the polymerzation process is thus hard to proceed.Interfacial polymerzation gets over the soluabilty restriction,providing a facile method for propelling the reaction of thesemonomers.Herein,we had prepared M1 containing tetraphenylethene(TPE)functionalized with two terpyridine derivatives,then making M1 dissolving in CHCl3 to give solutions.Cu^(2+)solutions were fabricated through dissolving CuCl_(2)into H2O.Towards mixing those solutions,AIE interfacial supramolecular polymers(AIEISPs)displaying green fluorescence were generated at the interface of two phases on the basis of metal-coordination between terpyridine and Cu^(2+).These AIEISPs were certificated to possess the stimuli-responsiveness,for which the excessive addition of tetrabutylammonium hydroxide would cause the structure destruction owing to the stronger bonding ability with Cu^(2+)than that of terpyridine.These fabricated AIEISPs had provided a new avenue to prepare AIE supramolecular polymers.展开更多
A novel palladium-coordinating Azo-type liquid crystalline polysiloxane (Pd-AZLCP) has been synthesized by chelation reaction of polymeric ligand, Azo-type liquid crystalline polysiloxane(AZLCP), with palladium di...A novel palladium-coordinating Azo-type liquid crystalline polysiloxane (Pd-AZLCP) has been synthesized by chelation reaction of polymeric ligand, Azo-type liquid crystalline polysiloxane(AZLCP), with palladium dichloride and potassium chloride in the presence of tetrahydrofuran (THF) as reaction medium instead of dioxane/water system, which has been used since Cope first reported the synthesis of palladium-azobenzene in 1965 . The mesogenic behaviors examined by DSC, temperature-variable X-ray diffraction and polarizing microscopy indicate that the incorporation of Pd ions into the liquid crystal polymer can play a positive effect on the mesogenic property of the parent polymeric ligand. It is exhibited that the isotropization temperature T;is increased and the mesophase range ΔT has been widened, too.展开更多
A new type of palladium chelate of β-diketone-based side chain liquid crystal polysiloxane (Pd-DKLCP) has been synthesized by chelation reaction of palladium dichloride with polymeric ligand, β-diketone polysiloxane...A new type of palladium chelate of β-diketone-based side chain liquid crystal polysiloxane (Pd-DKLCP) has been synthesized by chelation reaction of palladium dichloride with polymeric ligand, β-diketone polysiloxane (DKLCP), using THF as solvent at R.T.. The Pd-chelation results in greatly increasing the phase transition temperature T_K and the enthalpy change △H_K from crystal to liquid crystal state and making the temperature range of LC state △T(△T=T_(Cl)-T_K) widened. All these chelates Pd-DKLCP's do not show T_(Cl) until decomposition at 205℃. It is noteworthy that the Pd-chelation can exert more positive effect on the mesomorphic behaviour of the polymer ligand than the counterpart Cu-DKLCP does. It is probable due to the bigger size of disc-like mesogen formed from β-diketone and Pd^(+2) ion with 4d orbital.展开更多
We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/T...We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/Tb)and zinc ions to form the interpenetrating dual-polymer gel networks.The hydrogels exhibit excellent tunability of multi-spectrum emission colors(including white light)by simply varying the stoichiometry of metal ions.Furthermore,taking the advantage of different metal ion response mechanisms,we have demonstrated the reversible acidity/alkalinity stimuli-responsive behaviors of white-light-emitting hydrogel(WLE gel).Meanwhile,the unique cross-linked network formed through hydrogen-bonding,metal-ligand coordination and ionic interaction is introduced to achieve favorable mechanical strength of hydrogels.These properties enable the possibility in obtaining fluorescent patterns on hydrogels,which are promising candidate for encrypted information with improved security.展开更多
The development of spontaneously self-healing materials with excellent mechanical properties remains a formidable challenge despite the extensive interest in such materials.This is because the self-healing and mechani...The development of spontaneously self-healing materials with excellent mechanical properties remains a formidable challenge despite the extensive interest in such materials.This is because the self-healing and mechanical properties of a material are usually optimized via contradictory routes.The present study demonstrated a supertough spontaneously self-healing polymer,Fe-(2,6-diacetylpyridine dioxime)-urethane-based polyurethane(Fe-PPOU)based on septuple dynamic bonds integrated in one chemical group.A synergistic effect was induced by the presence of multiple dynamic crosslinking points,which comprised the integrated dynamic interactions,and the hidden lengths of the folded polymeric chains in Fe-PPOU.Thus,the mechanical and self-healing properties of the polymer were simultaneously optimized.Fe-PPOU demonstrated the highest reported toughness(139.8 MJ m^(-3))among all the room-temperature spontaneously self-healing polymers with a nearly 100%healing rate.Fe-PPOU exhibited instant(30 s)self-healing to reach a strength of 1.6 MPa that was higher than the original strength of numerous recently reported self-healing polymers.展开更多
基金supported by the Beijing Natural Science Foundation(No.2232024)the Analysis&Testing Centre at Beijing Institute of Technology for advanced facilities.
文摘Metal-complexed chiral macrocyclic architectures have attracted increasing research interests in circularly polarized luminescence owing to their distinctive structural and functional attributes.The method of metal coordination has emerged as a robust methodology for chirality induction in many systems.In this work,we engineered two rigid and flexible chiral organic ligands(L_(1) and L_(2))by synergizing the inherent planar chirality of pillar[5]arenes with tailored metal-coordination moieties.They demonstrate versatile coordination capabilities toward both 3d-and 4f-block metals,enabling modulation of luminescent characteristics with blue,green and red emissions.Four planar chiral complexes exhibiting CPL activity were synthesized through systematic coordination of L_(1)/L_(2) with Zn^(2+),Eu^(3+),and Tb^(3+).The coordination processes effectively rigidify molecular conformations,leading to an enhanced CPL performance.Particularly,the Tb-L_(2) complex displays superior lanthanide-centered emission with a fluorescence quantum yield of~55%and an emission dissymmetry factor glum=5.5×10^(-3).By engineering the substitution on pillar[5]arene scaffolds,we have established a metal-coordination platform with CPL characteristics,which paves the way in the design of new metal-based luminescent materials.
基金supported by the National Natural Science Foundation of China(Nos.52273023,51973103,and 21774069).
文摘Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an optimal balance among these properties remains a significant challenge.Herein,through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate(TEEA)and vinylimidazole(VI)in the presence of polyethylene glycol(PEG;Mn=400),tough P(TEEA-co-VI)/PEG elastomers with multiple functionalities were prepared,in which P(TEEA-co-VI)was dynamically cross-linked by imidazole-Zn^(2+)metal coordination crosslinks,and physically blended with PEG as polymer electrolyte to form a homogeneous mixture.Notably,Zn^(2+)has a negligible impact on the polymerization process,allowing for the in situ formation of numerous imidazole-Zn^(2+)metal coordination crosslinks,which can effectively dissipate energy upon stretching to largely reinforce the elastomers.The obtained P(TEEA-co-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m^(-3) with a high tensile strength of 3.3 MPa and a large elongation at break of 645%,along with outstanding self-healing capabilities due to the dynamic coordination crosslinks.Moreover,because of the miscibility of PEG with PTEEA copolymer matrix,and Li+can form weak coordination interactions with the ethoxy(EO)units in PEG and PTEEA,acting as a bridge to integrate PEG into the elastomer network.The resulted P(TEEA-co-VI)/PEG elastomers showed high transparency(92%)and stable high conductivity of 1.09×10_(-4) S·cm^(-1).In summary,the obtained elastomers exhibited a well-balanced combination of high toughness,high ionic conductivity,excellent self-healing capabilities,and high transparency,making them promising for applications in flexible strain sensors.
基金supported by the National Natural Science Foundation of China(Nos.21601025,21677029,21571025)Dalian Young Science and Technology Star Project(2017RQ156)
文摘Though the photo-physical properties of free base porphyrin are attractive, there are still problems for the materials with weak and narrow range absorption of visible light. The unsymmetrical neo-confused porphyrin derivatives were introduced as novel materials for the improvement of photo-chemical and photo-physical properties. The density function theory(DFT)and time dependent density function theory(TDDFT) were applied to calculate the absorption spectrum of unsymmetrical neo-confused porphyrin(N-CP) and metal-coordinated N-CP in various solutions. The Ni and Zn coordinated neo-confused porphyrin dipole moment values are smaller than the values of prototype porphyrin(Pro P) and N–CP. According to the electrophilicity index ω, Ni coordinated N–CP(Ni–N–CP) is susceptible to the polarity of solvents, while the Zn coordinated derivative(Zn–N–CP) is more immune to the solvent environment. Unlike the Gouterman's four frontier orbital model of common porphyrin materials, the electron transitions of N–CPs and metalcoordinated N–CPs from H–2 or lower molecular orbitals also contribute to ultraviolet and visible absorption. Most of oscillator strength f values of Zn–N–CP are significantly higher than the values of Ni–N–CP, which reflects the higher absorption intensity of Q and Soret bands. The maximum wavelength at 702.2 nm in vacuum drew our attention to the novel material. The broad absorption range, intense red-shifted Q band and higher stability in solvents suggest that N–CPs, especially Zn–N–CP, can be one class of new candidate dye-sensitized materials.
基金supported by the National Key Research and Development Program of China(2022YFB3807500)the Natural Science Foundation of China(22220102003)+3 种基金the Beijing Natural Science Foundation(JL23003)"Double-First-Class"construction projects(XK180301 and XK1804-02)China Postdoctoral Science Foundation 2023TQ0020Dostdoctoral Fellowship Program of CPSF(GZC20230199)。
文摘The implementation of pristine covalent organic polymer(CO_(2)P)with well-defined structure as air electrode may spark fresh vitality to rechargeable zinc-air flow batteries(ZAFBs),but it still remains challenges in synergistically regulating their electronic states and structural porosity for the great device performance.Here,we conquer these issues by exploiting N and S co-doped graphene with COP rich in metal-ligand nitrogen to synergistically construct an effective catalyst for oxygen reduction reaction(ORR).Among them,the N and S co-doped sites with high electronegativity properties alter the number of electron occupations in the d orbital of the iron centre and form electron-transfer bridges,thereby boosting the selectivity of the ORR-catalysed four-electron pathway.Meanwhile,the introduction of COP materials aids the formation of pore interstices in the graphene lamellae,which both adequately expose the active sites and facilitate the transport of reactive substances.Benefiting from the synergistic effect,as-prepared catalyst exhibits excellent half-wave potentials(E_(1/2)=912 mV)and stability(merely 8.8%drop after a long-term durability test of 50000 s).Further,ZAFBs assembled with the N/SG@CO_(2)P catalyst demonstrate exceptional power density(163.8 mW cm^(-2))and continuous charge and discharge for approximately 140 h at 10 mA cm^(-2),outperforming the noble-metal benchmarks.
基金the National Natural Science Foundation of China(No.22001087)Xiaofan Ji also appreciates the support from the Huazhong University of Science and Technology,where he is being supported by Fundamental Research Funds for the Central Universities(No.2020kfyXJJS013).
文摘High monomer concentration is a requisite for engendering the aggregation-induced emssion(AIE)phenomenon as well as the formation of supramolecular polymers.Therefore,this is supposed to ensure the generation of AIE supramolecular polymers,wherein the monomer soluability takes effect.Nevertheless,parts of supramolecular monomers are considered as poessessing different soluability towards the same sovlent,through which the polymerzation process is thus hard to proceed.Interfacial polymerzation gets over the soluabilty restriction,providing a facile method for propelling the reaction of thesemonomers.Herein,we had prepared M1 containing tetraphenylethene(TPE)functionalized with two terpyridine derivatives,then making M1 dissolving in CHCl3 to give solutions.Cu^(2+)solutions were fabricated through dissolving CuCl_(2)into H2O.Towards mixing those solutions,AIE interfacial supramolecular polymers(AIEISPs)displaying green fluorescence were generated at the interface of two phases on the basis of metal-coordination between terpyridine and Cu^(2+).These AIEISPs were certificated to possess the stimuli-responsiveness,for which the excessive addition of tetrabutylammonium hydroxide would cause the structure destruction owing to the stronger bonding ability with Cu^(2+)than that of terpyridine.These fabricated AIEISPs had provided a new avenue to prepare AIE supramolecular polymers.
基金This project was supported by the Natural Science Foundation of Henan province, China.
文摘A novel palladium-coordinating Azo-type liquid crystalline polysiloxane (Pd-AZLCP) has been synthesized by chelation reaction of polymeric ligand, Azo-type liquid crystalline polysiloxane(AZLCP), with palladium dichloride and potassium chloride in the presence of tetrahydrofuran (THF) as reaction medium instead of dioxane/water system, which has been used since Cope first reported the synthesis of palladium-azobenzene in 1965 . The mesogenic behaviors examined by DSC, temperature-variable X-ray diffraction and polarizing microscopy indicate that the incorporation of Pd ions into the liquid crystal polymer can play a positive effect on the mesogenic property of the parent polymeric ligand. It is exhibited that the isotropization temperature T;is increased and the mesophase range ΔT has been widened, too.
文摘A new type of palladium chelate of β-diketone-based side chain liquid crystal polysiloxane (Pd-DKLCP) has been synthesized by chelation reaction of palladium dichloride with polymeric ligand, β-diketone polysiloxane (DKLCP), using THF as solvent at R.T.. The Pd-chelation results in greatly increasing the phase transition temperature T_K and the enthalpy change △H_K from crystal to liquid crystal state and making the temperature range of LC state △T(△T=T_(Cl)-T_K) widened. All these chelates Pd-DKLCP's do not show T_(Cl) until decomposition at 205℃. It is noteworthy that the Pd-chelation can exert more positive effect on the mesomorphic behaviour of the polymer ligand than the counterpart Cu-DKLCP does. It is probable due to the bigger size of disc-like mesogen formed from β-diketone and Pd^(+2) ion with 4d orbital.
基金The financial support of this work by the National Natural Science Foundation of China(No.51973026)the Jilin Provincial Education Departments(No.JJKH20201169KJ)。
文摘We have developed a facile strategy to fabricate model multicolor hydrogels via a straightforward mixing process of poly acrylonitrile-grafted methacrylamide(PANMAM),polymethacrylic acid(PMAA)and doped lanthanide(Eu/Tb)and zinc ions to form the interpenetrating dual-polymer gel networks.The hydrogels exhibit excellent tunability of multi-spectrum emission colors(including white light)by simply varying the stoichiometry of metal ions.Furthermore,taking the advantage of different metal ion response mechanisms,we have demonstrated the reversible acidity/alkalinity stimuli-responsive behaviors of white-light-emitting hydrogel(WLE gel).Meanwhile,the unique cross-linked network formed through hydrogen-bonding,metal-ligand coordination and ionic interaction is introduced to achieve favorable mechanical strength of hydrogels.These properties enable the possibility in obtaining fluorescent patterns on hydrogels,which are promising candidate for encrypted information with improved security.
基金supported by the National Key Research and Development Program of China(2021YFC2101804,2021YFC2101802)the National Natural Science Foundation of China(52173117,51733002,52073049,21991123)+4 种基金the Belt&Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai(20520741000)the Natural Science Foundation of Shanghai(20ZR1402500)Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials(Donghua University)(18520750400)the Science and Technology Commission of Shanghai Municipality(20DZ2254900)the Fundamental Research Funds for the Central Universities,DHU Distinguished Young Professor Program(LZA2019001)。
文摘The development of spontaneously self-healing materials with excellent mechanical properties remains a formidable challenge despite the extensive interest in such materials.This is because the self-healing and mechanical properties of a material are usually optimized via contradictory routes.The present study demonstrated a supertough spontaneously self-healing polymer,Fe-(2,6-diacetylpyridine dioxime)-urethane-based polyurethane(Fe-PPOU)based on septuple dynamic bonds integrated in one chemical group.A synergistic effect was induced by the presence of multiple dynamic crosslinking points,which comprised the integrated dynamic interactions,and the hidden lengths of the folded polymeric chains in Fe-PPOU.Thus,the mechanical and self-healing properties of the polymer were simultaneously optimized.Fe-PPOU demonstrated the highest reported toughness(139.8 MJ m^(-3))among all the room-temperature spontaneously self-healing polymers with a nearly 100%healing rate.Fe-PPOU exhibited instant(30 s)self-healing to reach a strength of 1.6 MPa that was higher than the original strength of numerous recently reported self-healing polymers.