We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field ...We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.展开更多
A highly stretchable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate has been fabricated using simple and inexpensive self-assembly and transfer-printing...A highly stretchable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate has been fabricated using simple and inexpensive self-assembly and transfer-printing techniques.This composite structure supports coupled surface plasmons whose wavelengths are sensitive to the arrangement of the metal-capped colloidal spheres.Upon stretching,the lattice of metal-capped colloidal spheres will be deformed,leading to a large wavelength shift of surface plasmon resonances and simultaneously an obvious color change.This stretchable plasmonic structure offers a promising approach to tune surface plasmon resonances and might be exploited in realizing flexible plasmonic devices with tunability of mechanical strain.展开更多
基金Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0202201the National Natural Science Foundation of China under Grant Nos 61290304,11574335 and 61376016+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe 333 Project of Jiangsu province under Grant No BRA2017352
文摘We fabricate nano-structural metal films to improve photoluminescence of perovskite films. When the perovskite film is placed on an ammonia-treated alumina film, stronger photoluminescence is found due to local field en- hancement effects. In addition, the oxide spacer layer between the metal (e.g., AI, Ag and Au) substrate and the perovskite film plays an important role. The simulations and experiments imply that the enhancement is related to surface plasmons of nano-structural metals.
基金This work was supported by the National Program on Key Basic Research Project(973 Program)(Grant Nos.2007CB613200 and 2006CB921700)The research of J.Z.and X.H.L.is further supported by the National Natural Science Foundation of China(NSFC)and the Shanghai Science and Technology Commission.
文摘A highly stretchable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate has been fabricated using simple and inexpensive self-assembly and transfer-printing techniques.This composite structure supports coupled surface plasmons whose wavelengths are sensitive to the arrangement of the metal-capped colloidal spheres.Upon stretching,the lattice of metal-capped colloidal spheres will be deformed,leading to a large wavelength shift of surface plasmon resonances and simultaneously an obvious color change.This stretchable plasmonic structure offers a promising approach to tune surface plasmon resonances and might be exploited in realizing flexible plasmonic devices with tunability of mechanical strain.