We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. T...We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. The growth of the hybrids is attributed to the decomposition of CdS at high temperature and the strain relieving that arises mainly from the lattice mismatch between Cd and CdS. Temperature dependence of zerc^field resistance of single nanohybrid indicates that the as-produced Cd/CdS nanohybrid undergoes a metal-semiconductor transition as a natural consequence of hybrid from metallic Cd and semiconducting CdS. The metal/semiconductor hybrid property provides a promising basis for the development of novel nanoelectronic devices.展开更多
A full-coupling model on the current-voltage(J-V)characteristics of PN junctions is put forward in the paper by taking into account both the whole junction and the two electrode regions consisting of metal/semiconduct...A full-coupling model on the current-voltage(J-V)characteristics of PN junctions is put forward in the paper by taking into account both the whole junction and the two electrode regions consisting of metal/semiconductor(M/S)contacts.The depletion layer assumption proposed by the Shockley model is discarded.Gauss’law on the electric potential and the electric field is applied in the whole junction region such that the majority-carrier currents inside and outside the P/N barrier region are able to be exactly defined and clearly calculated.Then,the stable continuity equations of the electron and hole currents are established to show the current conversion between minority-and majority-carriers inside the whole PN junction region.By analyzing all the conversion procedure,the J-V characteristics of a PN junction are obtained with good agreement to the experimental results,which are closely dependent on the minority-carrier lifetime and doping concentrations.Obviously,the study on this topic possesses referential significance to mechanically tuning the performance of piezoelectric PN junctions and piezotronic devices.展开更多
Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the ...Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the key factors affecting the performance of DAFCs.Recently studies show that using the optical activity of semiconductor materials as the carriers of traditional precious metal electrocatalysts,under the illumination of light sources,can greatly improve the electrocatalytic activity and stability of electrodes.In this review,the research progress of photo-responsive metal/semiconductor hybrids as the electrocatalysts for DAFCs in recent years is summarized,including:(1)Mechanism and advantages of photo-assistant electrochemical alcohol oxidation reaction,(2)me tal/semiconductor electrocatalyst for the different type of fuel cell reactions,(3)different kind of metals in photo-responsive metal/semiconductor hybrid nanostructure,(4)the personal prospects of the photo-responsive metal/semiconductor electrode for future application in DAFCs.展开更多
The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology char...The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
With the explosive exploration of two-dimensional(2D)semiconductors for device applications,ensuring effective electrical contacts has become critical for optimizing device performance.Here,we demonstrate a universal ...With the explosive exploration of two-dimensional(2D)semiconductors for device applications,ensuring effective electrical contacts has become critical for optimizing device performance.Here,we demonstrate a universal resist-assisted metal transfer method for creating nearly free-standing metal electrodes on the SiO_(2)/Si substrate,which can be easily transferred onto 2D semiconductors to form van der Waals(vdW)contacts.In this method,polymethyl methacrylate(PMMA)serves both as an electron resist for electrode patterning and as a sacrificial layer.Contacted with our transferred electrodes,MoS2exhibits tunable Schottky barrier heights and a transition from n-type dominated to ambipolar conduction with increasing metal work functions,while In Se shows pronounced ambipolarity.Additionally,usingα-In2Se3as an example,we demonstrate that our transferred electrodes enhance resistance switching in ferroelectric memristors.Finally,the universality of our method is evidenced by the successful transfer of various metals with different adhesion forces and complex patterns.展开更多
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologie...Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.展开更多
Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) un...Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.展开更多
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi...Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents ca...Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.展开更多
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c...Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.展开更多
In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficienc...In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides.展开更多
Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based ...Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.展开更多
Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu...Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.展开更多
The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of t...The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.展开更多
High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-poly...High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60806005)
文摘We report on the synthesis and the characterisation of metal/semiconductor hybrids consisting of self-assembled CdS nanoparticles on Cd nanowires, which are grown by thermal evaporation of the mixture of CdS and Cr. The growth of the hybrids is attributed to the decomposition of CdS at high temperature and the strain relieving that arises mainly from the lattice mismatch between Cd and CdS. Temperature dependence of zerc^field resistance of single nanohybrid indicates that the as-produced Cd/CdS nanohybrid undergoes a metal-semiconductor transition as a natural consequence of hybrid from metallic Cd and semiconducting CdS. The metal/semiconductor hybrid property provides a promising basis for the development of novel nanoelectronic devices.
基金Project supported by the National Natural Science Foundation of China (Nos.11972164,11672113,11472182)the Key Laboratory Project of Hubei Province of China (No.2016CFA073)。
文摘A full-coupling model on the current-voltage(J-V)characteristics of PN junctions is put forward in the paper by taking into account both the whole junction and the two electrode regions consisting of metal/semiconductor(M/S)contacts.The depletion layer assumption proposed by the Shockley model is discarded.Gauss’law on the electric potential and the electric field is applied in the whole junction region such that the majority-carrier currents inside and outside the P/N barrier region are able to be exactly defined and clearly calculated.Then,the stable continuity equations of the electron and hole currents are established to show the current conversion between minority-and majority-carriers inside the whole PN junction region.By analyzing all the conversion procedure,the J-V characteristics of a PN junction are obtained with good agreement to the experimental results,which are closely dependent on the minority-carrier lifetime and doping concentrations.Obviously,the study on this topic possesses referential significance to mechanically tuning the performance of piezoelectric PN junctions and piezotronic devices.
基金the National Natural Science Foundation of China(Nos.21603111,51702173)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515020038)the Pearl River Talent Recruitment Program of Guangdong Province(No.2019QN01L148)。
文摘Direct alcohol fuel cells(DAFCs)have received wide attention as a new type of clean energy device because of their high energy conversion efficiency,portability,non-toxicity and pollution-free.Anode catalysts are the key factors affecting the performance of DAFCs.Recently studies show that using the optical activity of semiconductor materials as the carriers of traditional precious metal electrocatalysts,under the illumination of light sources,can greatly improve the electrocatalytic activity and stability of electrodes.In this review,the research progress of photo-responsive metal/semiconductor hybrids as the electrocatalysts for DAFCs in recent years is summarized,including:(1)Mechanism and advantages of photo-assistant electrochemical alcohol oxidation reaction,(2)me tal/semiconductor electrocatalyst for the different type of fuel cell reactions,(3)different kind of metals in photo-responsive metal/semiconductor hybrid nanostructure,(4)the personal prospects of the photo-responsive metal/semiconductor electrode for future application in DAFCs.
基金financially supported by the Program of the National Natural Science Foundation of China(Grant No.52371055)the Young Elite Scientist Sponsorship Program Cast(Grant No.YESS20200139)the Basic Scientific Research Project of Liaoning Provincial Department of Education(Grant No.JYTMS20230618)。
文摘The effect of intermetallic particles on the corrosion of 6061 aluminum alloy and its coating used in semiconductor processing systems was systematically studied via liquid and gas experiments and micromorphology characterization.The results revealed that a huge difference of corrosion resistance between imported and domestic 6061 aluminum alloys in HCl solution and gas acid mist experiments mainly was attributed to the different size and amount of Al_(15)(Fe,Mn)_(3)Si_(2).The corrosion resistance of domestic 6061 alloy in dry/wet semiconductor electronic special gas environments was worse than that of imported aluminum alloy,and there are great differences in the corrosion mechanism of 6061 alloy caused by the second phase in the two dry/wet environments.And the corrosion resistance of the hard anodized alumina film was closely related to the microscopic morphology of holes.The vertical and elongatedα-Al_(15)(Mn,Fe)_(3)Si_(2) phase was formed in the rolled aluminum alloy that has been rolled perpendicular to the surface of the substrate.Compared to the horizontal long hole,the longitudinal long holes generated by the verticalα-Al_(15)(Mn,Fe)_(3)Si_(2) phase will enable the corrosive medium to reach the substrate rapidly,which significantly weakens the corrosion resistance of the hard anodized film.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金supported by the National Key Research&Development Project of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+4 种基金Strategic Priority Research Program of Chinese Academy of Sciences(CAS,Grant Nos.XDB30000000 and XDB28000000)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201914430039)support from the Electron Microscopy Center at the University of Chinese Academy of Sciences。
文摘With the explosive exploration of two-dimensional(2D)semiconductors for device applications,ensuring effective electrical contacts has become critical for optimizing device performance.Here,we demonstrate a universal resist-assisted metal transfer method for creating nearly free-standing metal electrodes on the SiO_(2)/Si substrate,which can be easily transferred onto 2D semiconductors to form van der Waals(vdW)contacts.In this method,polymethyl methacrylate(PMMA)serves both as an electron resist for electrode patterning and as a sacrificial layer.Contacted with our transferred electrodes,MoS2exhibits tunable Schottky barrier heights and a transition from n-type dominated to ambipolar conduction with increasing metal work functions,while In Se shows pronounced ambipolarity.Additionally,usingα-In2Se3as an example,we demonstrate that our transferred electrodes enhance resistance switching in ferroelectric memristors.Finally,the universality of our method is evidenced by the successful transfer of various metals with different adhesion forces and complex patterns.
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
基金supported by the National Natural Science Foundation of China(62374150)Natural Science Foundation of Henan(242300421216)+3 种基金C.Zheng acknowledges the support of China Postdoctoral Science Foundation(Grant No.2023TQ0296)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232389)Y.Xie acknowledges the support of National Natural Science Foundation of China(62074011,62134008)Beijing Outstanding Young Scientist Program(JWZQ20240102009).
文摘Semiconductor optoelectronics devices,capable of converting electrical power into light or conversely light into electrical power in a compact and highly efficient manner represent one of the most advanced technologies ever developed,which has profoundly reshaped the modern life with a wide range of applications.In recent decades,semiconductor technology has rapidly evolved from first-generation narrow bandgap materials(Si,Ge)to the latest fourth-generation ultra-wide bandgap semiconductor(GaO,diamond,AlN)with enhanced performance to meet growing demands.Additionally,merging semiconductor devices with other techniques,such as computer assisted design,state-of-the-art micro/nano fabrications,novel epitaxial growth,have significantly accelerated the development of semiconductor optoelectronics devices.Among them,integrating metasurfaces with semiconductor optoelectronic devices have opened new frontiers for on-chip control of their electromagnetic response,providing access to previously inaccessible degrees of freedom.We review the recent advances in on-chip control of a variety of semiconductor optoelectronic devices using integrated metasurfaces,including semiconductor lasers,semiconductor light emitting devices,semiconductor photodetectors,and low dimensional semiconductors.The integration of metasurfaces with semiconductors offers wafer-level ultracompact solutions for manipulating the functionalities of semiconductor devices,while also providing a practical platform for implementing cuttingedge metasurface technology in real-world applications.
基金supported by the National Natural Science Foundation of China (Grant No. 12304072)Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004)+1 种基金Natural Science Foundation of Ningbo(Grant No. 2021J121)supported by the User Experiment Assist System of Shanghai Synchrotron Radiation Facility (SSRF)。
文摘Conventional theories expect that materials under pressure exhibit expanded valence and conduction bands,leading to increased electrical conductivity.Here,we report the electrical properties of the doped 1T-TiS_(2) under high pressure by electrical resistance investigations,synchrotron x-ray diffraction,Raman scattering and theoretical calculations.Up to 70 GPa,an unusual metal-semiconductor-metal transition occurs.Our first-principles calculations suggest that the observed anti-Wilson transition from metal to semiconductor at 17 GPa is due to the electron localization induced by the intercalated Ti atoms.This electron localization is attributed to the strengthened coupling between the doped Ti atoms and S atoms,and the Anderson localization arising from the disordered intercalation.At pressures exceeding 30.5 GPa,the doped TiS_(2) undergoes a re-metallization transition initiated by a crystal structure phase transition.We assign the most probable space group as P2_(1)2_(1)2_(1).Our findings suggest that materials probably will eventually undergo the Wilson transition when subjected to sufficient pressure.
基金supported by the National Natural Science Foundation of China(Nos.52100184,and U22A20617).
文摘Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
基金supported by Natural Science Foundation of Hunan Province(2021JJ31081,2024JJ5619)the Science Fund of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(No 32215004).
文摘Biliary system,which is responsible for transporting bile from the liver into the intestine,is commonly damaged by inflammation or tumors eventually causing liver failure or death.The implantation of biliary stents can effectively alleviate both benign and malignant biliary strictures,but the plastic and metal stents that are currently used cannot degrade and nearly has no beneficial biological effects,therefore their long-term service can result into inflammation,the formation of sludges and re-obstruction of bile duct.In recent years,magnesium(Mg)metal has been received increasing attention in the field of biomedical application due to its excellent biocompatibility,adequate mechanical properties,biodegradability and other advantages,such as anti-inflammatory and anti-tumor properties.The research on biliary stents made of magnesium metals(BSMM)has also made significant progress and a series of experiments in vitro and vivo has proved their possibility.However,there are still some problems holding back BSMM’s clinical use,including rapid corrosion rate and potential harmful reaction.In this review,we would summarize the current research of BSMM,evaluate their clinical benefits,find the choke points,and discuss the solving method.
基金supported by the National Natural Science Foundation of China(No.52371240)the Natural Science Foundation of Jiangsu Province(No.BK20230556)+2 种基金China Postdoctoral Science Foundation(No.2022M722686)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB701)The Big Data Computing Center of Southeast University.
文摘Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.
基金National Natural Science Foundation of China,Grant/Award Number:51073067Scientific and Technological Development Program of Jilin Province,Grant/Award Number:20220201138GX.
文摘In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides.
基金supported by the GRDC(Global Research Development Center)Cooperative Hub Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(MSIT)(No.RS-2023-00257595).
文摘Liquid metals(LMs),because of their ability to remain in a liquid state at room temperature,render them highly versatile for applications in electronics,energy storage,medicine,and robotics.Among various LMs,Ga-based LMs exhibit minimal cytotoxicity,low viscosity,high thermal and electrical conductivities,and excellent wettability.Therefore,Ga-based LM composites(LMCs)have emerged as a recent research focus.Recent advancements have focused on novel fabrication techniques and applications spanning energy storage,flexible electronics,and biomedical devices.Particularly noteworthy are the developments in wearable sensors and electronic skins,which hold promise for healthcare monitoring and human-machine interfaces.Despite their potential,challenges,such as oxidative susceptibil-ity and biocompatibility,remain.Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains.This review provides a concise overview of the recent trends in LMC research,highlights their transformative impacts,and outlines key directions for future investigation and development.
基金supported by the Sichuan Science and Technology Program(No.2021YJ0385)the Project in Yangtze River Ecological Environment Protection and Restoration(No.2022-LHYJ-02-0509-08).
文摘Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.
基金financial support from the National Natural Science Foundation of China(Nos.U2067201,52204300)the National 111 Project,China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0297).
文摘The combined reagents of sodium N-oleoylsarcosinate(SNOS)with metal ions(Ca(Ⅱ),Mg(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ))was employed to facilitate the separation of lepidolite from feldspar.The synergistic interaction mechanism of this combined reagent was systematically investigated via contact angle measurements,AFM,FTIR,species distribution calculations,and DFT calculations.The results suggested that Ca(Ⅱ)exhibited the best selectivity for activating lepidolite flotation.SNOS was chemically adsorbed on the Ca(Ⅱ)-activated lepidolite surface with an adsorption energy of−1248.91 kJ/mol while a lower adsorption energy of−598.84 kJ/mol of SNOS on Ca(Ⅱ)-activated feldspar was calculated.Therefore,this combination of SNOS and Ca(Ⅱ)is a promising reagent scheme for the efficient recovery of lithium from aluminosilicate ore.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120230104).
文摘High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs.