期刊文献+
共找到493篇文章
< 1 2 25 >
每页显示 20 50 100
Level-shifted embedded cluster method may offer a viable alternative for the simulation of metal oxides
1
作者 Zi-Jian Zhou Xin-Ping Wu 《Chinese Journal of Structural Chemistry》 2025年第5期1-2,共2页
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s... The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2]. 展开更多
关键词 chemical reactionsand industrial production heterogeneous catalysiswhich metal oxides energy storagechemical biomedical applicationsone level shifted embedded cluster method catalystsmetal oxides
原文传递
Correction:Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation
2
作者 Fushan Li Nannan Wu +8 位作者 Hideo Kimura Yuan Wang Ben Bin Xu Ding Wang Yifan Li Hassan Algadi Zhanhu Guo Wei Du Chuanxin Hou 《Nano-Micro Letters》 2025年第11期530-533,共4页
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,... Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction. 展开更多
关键词 binary metal oxides ultrabroad absorption bandwidth electromagnetic wave absorber interfacial modulation defects modulation XRD microcubes
在线阅读 下载PDF
Synthesis and Application of Zero-Dimensional Metal Oxide Composites in Energy Chemistry
3
作者 Runtian Hu 《Journal of Electronic Research and Application》 2025年第5期185-191,共7页
Against the backdrop of increasingly prominent global energy shortages and environmental issues,the development of efficient energy conversion and storage technologies has become crucial.Zero-dimensional(0D)metal oxid... Against the backdrop of increasingly prominent global energy shortages and environmental issues,the development of efficient energy conversion and storage technologies has become crucial.Zero-dimensional(0D)metal oxide composites exhibit significant application value in the field of energy chemistry due to their unique properties,such as quantum size effect and high specific surface area.From a broad perspective,this paper reviews the main synthesis methods of these composites,including sol-gel method,hydrothermal/solvothermal method,precipitation method,and template method,while analyzing the characteristics of each method.It further discusses their applications in photocatalytic hydrogen production,fuel cells,lithium-ion batteries,and supercapacitors.Additionally,the current challenges,such as material dispersibility and interface bonding,are pointed out,and future development directions are prospected,aiming to provide references for related research. 展开更多
关键词 Zero-dimensional metal oxide Composite material Synthesis method Energy chemistry Energy conversion Energy storage
在线阅读 下载PDF
Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation
4
作者 Qingbai Tian BingLiang Yu +3 位作者 Zhihao Li Wei Hong Qian Li Xing Xu 《Chinese Chemical Letters》 2025年第6期557-561,共5页
Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and re... Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device. 展开更多
关键词 PEROXYMONOSULFATE Catalytic membranes metal oxides Fenton-like reaction Ceramic membrane
原文传递
Corrigendum to“High-throughput discovery of kagome materials in transition metal oxide monolayers”
5
作者 Renhong Wang Cong Wang +5 位作者 Ruixuan Li Deping Guo Jiaqi Dai Canbo Zong Weihan Zhang Wei Ji 《Chinese Physics B》 2025年第9期673-673,共1页
The labels of VU1 and VU2 in Fig.1(b)of the paper[Chin.Phys.B 34046801(2025)]were not correctly placed.The correct figure is provided.This modification does not affect the result presented in the paper.
关键词 CORRIGENDUM monolayers two-dimensional kagome materials transition metal oxides high-throughput calculations
原文传递
Recent achievements in rare earth modified metal oxides for environmental and energy applications:A review
6
作者 Yicheng Li Qian Liu +2 位作者 Tianhao Li Hao Bi Zhurui Shen 《Chinese Chemical Letters》 2025年第9期112-127,共16页
Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as lumi... Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries. 展开更多
关键词 Rare earth metal ELECTROCATALYSIS metal oxides Machine learning Environment and energy
原文传递
Screening dual variable-valence metal oxides doped calcium-based material for calcium looping thermochemical energy storage and CO_(2)capture with DFT calculation
7
作者 Youhao Zhang Yi Fang +4 位作者 Zhiwei Chu Zirui He Jianli Zhao Kuihua Han Yingjie Li 《Journal of Energy Chemistry》 2025年第8期170-182,共13页
The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping... The reaction characteristics of calcium-based materials during calcium looping(CaL)process are pivotal in the efficiency of CaL thermochemical energy storage(TCES)and CO_(2)capture systems.Currently,metal oxide doping is the primary method to enhance the reaction characteristics of calcium-based materials over multiple cycles.In particular,co-doping with variable-valence metal oxides(VVMOs)can effectively increase the oxygen vacancy content in calcium-based materials,significantly improving their cyclic reaction characteristics.However,there are so numerous VVMOs co-doping schemes that the experimental screening process is complex,consuming considerable time and economic costs.Density functional theory(DFT)calculations have been widely used to reveal the impact of metal oxide doping on the cyclic reaction characteristics of calcium-based materials,with calculation results showing good agreement with experimental conclusions.Nevertheless,there is still a lack of research on utilizing DFT to screen calcium-based materials,and a systematic research methodology has not yet been established.In this study,a systematic DFT-based screening methodology for calcium-based materials was proposed.A series of key parameters for DFT calculations including CO_(2)adsorption energy,oxygen vacancy formation energy,and sintering resistance were proposed.Furthermore,a preliminary mathematical model to predict the CaL TCES and CO_(2)capture performance of calcium-based materials was introduced.The aforementioned DFT method was employed to screen for VVMOs co-doped calcium-based materials.The results revealed that Mn and Ce co-doped calcium-based materials exhibited superior DFT-predicted reaction characteristics.These DFT predictions were validated through experimental assessments of cyclic thermochemical energy storage,CO_(2)capture,and relevant characterization.The outcomes demonstrate a high degree of consistency among DFT-based predictions,experimental results,and characterization.Hence,the DFT-based screening methodology for calcium-based materials proposed herein is a viable solution,poised to offer theoretical insights for the efficient design of calcium-based materials. 展开更多
关键词 Density functional theorу Calcium looping Material screening Variable-valence metal oxide CO_(2)capture Thermochemical energy storage
在线阅读 下载PDF
High-throughput discovery of kagome materials in transition metal oxide monolayers
8
作者 Renhong Wang Cong Wang +5 位作者 Ruixuan Li Deping Guo Jiaqi Dai Canbo Zong Weihan Zhang Wei Ji 《Chinese Physics B》 2025年第4期47-53,共7页
Kagome materials are known for hosting exotic quantum states,including quantum spin liquids,charge density waves,and unconventional superconductivity.The search for kagome monolayers is driven by their ability to exhi... Kagome materials are known for hosting exotic quantum states,including quantum spin liquids,charge density waves,and unconventional superconductivity.The search for kagome monolayers is driven by their ability to exhibit neat and well-defined kagome bands near the Fermi level,which are more easily realized in the absence of interlayer interactions.However,this absence also destabilizes the monolayer forms of many bulk kagome materials,posing significant challenges to their discovery.In this work,we propose a strategy to address this challenge by utilizing oxygen vacancies in transition metal oxides within a“1+3”design framework.Through high-throughput computational screening of 349 candidate materials,we identified 12 thermodynamically stable kagome monolayers with diverse electronic and magnetic properties.These materials were classified into three categories based on their lattice geometry,symmetry,band gaps,and magnetic configurations.Detailed analysis of three representative monolayers revealed kagome band features near their Fermi levels,with orbital contributions varying between oxygen 2p and transition metal d states.This study demonstrates the feasibility of the“1+3”strategy,offering a promising approach to uncovering low-dimensional kagome materials and advancing the exploration of their quantum phenomena. 展开更多
关键词 monolayers two-dimensional kagome materials transition metal oxides high-throughput calculations
原文传递
Vibrational Resolved Photoelectron Imaging and Theoretical Study of the Group IVB Transition Metal Oxides Anions:MO_(2)^(-)(M=Ti,Zr,and Hf)
9
作者 Hechen Ju Yuan Zhou +4 位作者 Changcai Han Zejie Fei Xiao-Gen Xiong Changwu Dong Hongtao Liu 《Chinese Journal of Chemical Physics》 2025年第5期615-624,I0148,共11页
The vibrational resolved spectra of MO_(2)^(-)/MO_(2)(M=Ti,Zr,and Hf)are reported by using photoelectron imaging and theoretical calculations.The results indicate that all the ground states of anionic and neutral MO_(... The vibrational resolved spectra of MO_(2)^(-)/MO_(2)(M=Ti,Zr,and Hf)are reported by using photoelectron imaging and theoretical calculations.The results indicate that all the ground states of anionic and neutral MO_(2)(M=Ti,Zr,and Hf)compounds are formed in bent insertion structures.The observed ground-state adiabatic detachment energy(ADE)is measured to be 1.597±0.003,1.651±0.003,and 2.119±0.003 eV for TiO_(2)^(-),ZrO_(2)^(-),and HfO_(2)^(-),respectively.The vibrational frequencies of the anionic and neutral MO_(2)are also determined from the experimental spectra.The results of theoretical calculations show that the electronic configurations of MO_(2)^(-)are^(2)A_(1)with C_(2v)point group.Bond order analysis indicates that the two M-O bonds are all multiple characters. 展开更多
关键词 Photoelectron spectroscopy Transition metal oxides Velocity-map imaging Franck-Condon simulation
在线阅读 下载PDF
Copper/metal oxide heterostructures for electrochemical carbon dioxide reduction
10
作者 Jiang-Cheng Yan Fang-Mu Wang +3 位作者 Shuai Yin Jing Zhang Wei Jiang Gui-Gao Liu 《Rare Metals》 2025年第4期2239-2267,共29页
The reduction of global carbon emissions and the achievement of carbon neutrality have become the focus of addressing climate change and global warming.Electrochemical CO_(2) reduction(CO_(2)RR),as a technology that c... The reduction of global carbon emissions and the achievement of carbon neutrality have become the focus of addressing climate change and global warming.Electrochemical CO_(2) reduction(CO_(2)RR),as a technology that can efficiently convert CO_(2) into value-added products,is receiving widespread attention.This article reviews the current research status of Cu/metal oxide heterostructures in the field of electrochemical reduction of CO_(2).The review first introduces the importance of electrochemical reduction of CO_(2) and the application potential of Cu/metal oxide heterostructures in this field.Subsequently,a comprehensive discussion is presented on the exploration of various Cu/metal oxide heterostructures and their corresponding structure-performance relationship,with particular emphasis on the catalysts'activity,selectivity,stability and the nature of active sites.Lastly,the review provides an overview of the current research challenges and future development trends in this field. 展开更多
关键词 Cu/metal oxide heterostructures Electrochemical CO_(2)reduction ELECTROCATALYSTS Interfacial effect
原文传递
The amorphization strategies of two-dimensional transition metal oxide/(oxy)hydroxide nanomaterials for enhanced electrocatalytic water splitting
11
作者 Si-Bin Duan Yu-Qing Wang +3 位作者 Rui Cao Yi-Fei Sun Wen Zhang Rong-Ming Wang 《Rare Metals》 2025年第2期822-840,共19页
Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demo... Amorphous two-dimensional transition metal oxide/(oxy)hydroxide(2D TMO/TMHO)nanomaterials(NMs)have the properties of both 2D and amorphous materials,displaying outstanding physicochemical qualities.Therefore,they demonstrate considerable promise for use in electrocatalytic water splitting applications.Here,the primary amorphization strategies for achieving the 2D TMO/TMHO NMs are comprehensively reviewed,including low-temperature reaction,rapid reaction,exchange/doping effect,ligand modulation,and interfacial energy confinement.By integrating these strategies with various physicochemical synthesis methods,it is feasible to control the amorphization of TMO/TMHO NMs while maintaining the distinctive benefits of their 2D structures.Furthermore,it delves into the structural advantages of amorphous 2D TMO/TMHO NMs in electrocatalytic water splitting,particularly emphasizing recent advancements in enhancing their electrocatalytic performance through interface engineering.The challenges and potential future directions for the precise synthesis and practical application of amorphous 2D TMO/TMHO NMs are also provided.This review aims to establish a theoretical foundation and offer experimental instructions for developing effective and enduring electrocatalysts for water splitting. 展开更多
关键词 Amorphous nanomaterials 2D materials Transition metal oxide/(oxy)hydroxide Electrocatalytic water splitting
原文传递
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
12
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 metal-organic frameworks metal oxide Carbon composite LASER Gas sensor
在线阅读 下载PDF
A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants 被引量:2
13
作者 Athira Krishnan Anna Swarnalal +3 位作者 Divine Das Midhina Krishnan Viswanathan S.Saji SMAShibli 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期389-417,共29页
This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has ... This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented. 展开更多
关键词 PHOTOCATALYSIS Dye degradation Transition metal oxides and composites Supported catalysts Suspended catalysts
原文传递
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:2
14
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
在线阅读 下载PDF
Ternary alloy and metal oxides embedded in yolk–shell polyhedrons as bifunctional oxygen electrocatalyst 被引量:2
15
作者 Yi Zhang Jia-Dan Lu +2 位作者 Guang-Xun Zhang Rong-Mei Zhu Huan Pang 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期478-488,共11页
To improve the efficiency of oxygen electrolysis,exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution rea... To improve the efficiency of oxygen electrolysis,exploiting bifunctional electrocatalysts with excellent activity and stability is extremely important due to the four-electron transfer dynamics of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Herein,a series of yolk-shell hollow polyhedrons(YHPs)embedded with NiCoFe ternary alloy and metal oxides,which are named YHP-x(x=1,2,3,4),were reported.By controlled etching multi-layered zeolitic imidazolate frameworks and following pyrolytic integration,YHPs are endowed with mass transfer tunnels,accessible inner active sites,and good electrical conductivity.Due to the synergetic effect of the alloy,metal oxides and the yolk-shell structure,YHP-1 exhibits excellent ORR performance with a half-wave potential of 0.79 V and YHP-2 displays superior OER performance with a low overpotential of 257 mV at 10 mA cm−2.The strategy described in this work can be extended to a number of hollow/yolk-shell electrocatalysts for water splitting and metal–air batteries. 展开更多
关键词 metal oxides and alloy Oxygen evolution Oxygen reduction Yolk-shell polyhedron
原文传递
Photoelectrochemical seawater oxidation with metal oxide materials:Challenges and opportunities 被引量:1
16
作者 Miao Kan Hangyu Hu +3 位作者 Weijie Zhuang Meng Tao Shiqun Wu Jinlong Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期767-782,I0016,共17页
Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water ... Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area. 展开更多
关键词 PHOTOELECTROCHEMISTRY ANODE Water oxidation metal oxide Seawater STABILITY
在线阅读 下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
17
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
在线阅读 下载PDF
Progress in metal oxide-based electrocatalysts for sustainable water splitting 被引量:1
18
作者 Aasiya S.Jamadar Rohit Sutar +2 位作者 Susmita Patil Reshma Khandekar Jyotiprakash B.Yadav 《Materials Reports(Energy)》 EI 2024年第3期19-34,共16页
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va... Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future. 展开更多
关键词 metal oxide HER OER ELECTROCATALYST Overall water spilling
在线阅读 下载PDF
Revealing the correlation between adsorption energy and activation energy to predict the catalytic activity of metal oxides for HMX using DFT
19
作者 Xiurong Yang Chi Zhang +6 位作者 Wujing Jin Zhaoqi Guo Hongxu Gao Shiyao Niu Fengqi Zhao Bo Liu Haixia Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期262-270,共9页
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate... Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost. 展开更多
关键词 Density functional theory HMX metal oxides Adsorption energy Activation energy
在线阅读 下载PDF
Highly dispersed MgInCe-mixed metal oxides catalyzed direct carbonylation of glycerol and CO_(2)into glycerol carbonate
20
作者 Xufang Chen Xin Shu +5 位作者 Yanru Zhu Jian Zhang Zhigang Chai Hongyan Song Zhe An Jing He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期153-163,共11页
Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire... Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified. 展开更多
关键词 Catalytic reaction engineering Glycerol carbonate Direct carbonylation from glycerol Carbon dioxide Mixed metal oxides Synergistic catalysis
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部