(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y...Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.展开更多
Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethy...Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].展开更多
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT...The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2).展开更多
Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting p...Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting photocatalysts for their atomic precision in active site engineering,controllable porosity,and exceptional photochemical stability under ambient conditions.However,inherent limitations persist in conventional MOFs,including restricted solar spectrum utilization,inefficient charge carrier separation,and inadequate epoxide activation ability.Recent breakthroughs address these challenges through multiple strategies:ligand engineering,dopant incorporation,and composite construction.This review systematically maps the evolutionary trajectory of MOF‑based photocatalysts,providing mechanistic insights into structure‑activity relationships and providing insights and directions for the design of high‑performance MOF‑based photocatalysts.展开更多
The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present ...The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present a water‑stable cadmium metal‑organic framework(Cd‑MOF)based luminescence probe,which can detect Al^(3+),Ga^(3+),and In^(3+)ions in aqueous solutions via a luminescence“turn‑on”mode.The corresponding detection limits for the Al^(3+),Ga^(3+),and In^(3+)ions were 2.31,3.06,and 2.78μmol·L^(-1),respectively.This probe operated effectively within a pH range of 3‑10 in an all‑aqueous environment.Investigations into the detection mechanism revealed that this“turn‑on”recognition is attributed to the formation of new structures upon ion interaction.展开更多
Metal organic frameworks(MOFs)have emerged as promising candidates for atmospheric water harvesting due to their high porosity and tunable functionality.Among diverse MOFs,MOF-303 has demonstrated excellent water adso...Metal organic frameworks(MOFs)have emerged as promising candidates for atmospheric water harvesting due to their high porosity and tunable functionality.Among diverse MOFs,MOF-303 has demonstrated excellent water adsorption capacity,rapid desorption kinetics and structural stability.Nevertheless,its practical application is still limited by the time-consuming synthesis process and difficultiesin morphological control.To overcome these challenges,a surfactant-mediated microwaveassisted strategy was proposed.Compared to conventional heating methods,microwave irradiation reduced the reaction duration from 24 h to 1 h with a 13%increase in product yield(from 76%to 89%).However,the accelerated nucleation under microwave irradiation resulted in smaller crystal dimensions(from 50 nm±10 nm to 35 nm±10 nm),therefore inducing severe particle agglomeration.To mitigate this morphological drawback,systematic investigations were conducted to evaluate the effects of surfactants’species on crystal growth.Among the selected surfactants,poly(sodium-p-styrene sulfonate)(PSS)was identifiedas an effective morphology-directing agent,achieving uniform crystal sizes with improved monodispersity through preferential adsorption on specificcrystallographic planes of the MOF.Subsequent optimization of synthetic conditions,including temperature(120-160℃),reaction time(15 min^(-1) h),and surfactant concentration,yielded MOF-303 with a yield of 96.37%,with particle uniformity of(35 nm±10 nm)and predominantly blocky crystal morphology.Water adsorption measurements confirmedthat the surfactant-modifiedMOF-303 retained comparable performance to the surfactant-free counterpart,with a maximum capacity(water/MOF)of 0.214 g·g^(-1) at 35%RH.This study establishes a scalable and tunable synthetic protocol for MOF-303,providing critical insights into microwave-accelerated crystal engineering.展开更多
As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 n...As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges.展开更多
Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environm...Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environmental pollution.Especially,the improper treatment and disposal of toxic sludge generated from different industrial processes or specific wastewater treatment operations exerted significant pressure and threat to hydrosphere,pedosphere,atmosphere and even biosphere.展开更多
Cost-effective CO_(2) adsorbents are gaining increasing attention as viable solutions for mitigating climate change.In this study,composites were synthesized by electrochemically combining the post-gasification residu...Cost-effective CO_(2) adsorbents are gaining increasing attention as viable solutions for mitigating climate change.In this study,composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate(CuBTC).Among the different composites synthesized,the ratio of 1:1 between biochar and CuBTC(B 1:1)demonstrated the highest CO_(2) adsorption capacity.Under controlled laboratory conditions(0℃,1 bar,without the influence of ambient moisture or CO_(2) diffusion limitations),B 1:1 achieved a CO_(2) adsorption capacity of 9.8 mmol/g,while under industrial-like conditions(25℃,1 bar,taking into account the impact of ambient moisture and CO_(2) diffusion limitations within a bed of adsorbent),it reached 6.2 mmol/g.These values surpassed those reported for various advanced CO_(2) adsorbents investigated in previous studies.The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites,porosity,and the preservation of the full physical and chemical surface properties of both parentmaterials.Furthermore,the composite exhibited a notable CO_(2)/N_(2) selectivity and improved stability under moisture conditions.These favorable characteristics make B 1:1 a promising candidate for industrial applications.展开更多
Metal-organic frameworks(MOFs)have garnered widespread attention due to their designability and diversity[1].Customization has always been a pursuit of chemists and materials scientists[2].Topology provides a means of...Metal-organic frameworks(MOFs)have garnered widespread attention due to their designability and diversity[1].Customization has always been a pursuit of chemists and materials scientists[2].Topology provides a means of abstracting the complex structures of MOFs by identifying and classifying the fundamental building units and connection patterns,simplifying the understanding of MOF structures[3].展开更多
The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using lum...The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using luminescent metal-organic frameworks(LMOFs)with large surface areas and tunable pore structures,combined with organic carbon quantum dots(CQDs).This study develops a novel white lightemitting diode(WLED)fluorescent powder by incorporating yellow-fluorescent quantum dots(CQDs-Y)into blue-emitting LMOF(ZJU-28),forming the composite material CQDs-Y-n@ZJU-28.The composite exhibits excellent thermal and chemical stability,long-term storage performance,and emits warm white light(CIE:0.3277,0.3281)when subjected to excitation at 365 nm,along with an external quantum efficiency(EQE)of 8.85%.Furthermore,it exhibits tunable emission characteristics and promising LED performance,showcasing a color rendering index(CRI)of 78 and a correlated color temperature of 3384 K.The emitted light undergoes minimal deviation in color towards the white end of the spectrum in the temperature range of 277-437 K,making it an ideal candidate for advanced WLED applications.展开更多
Ultramicroporous materials(pore dimension<7Å,as defined by IUPAC)have emerged as an intriguing class of porous substances with exceptional potential in molecular separation.Current benchmark materials includin...Ultramicroporous materials(pore dimension<7Å,as defined by IUPAC)have emerged as an intriguing class of porous substances with exceptional potential in molecular separation.Current benchmark materials including zeolites face inherent limitations in achieving hyperfine control of pore metrics,which hinder their ability to discriminate and separate molecules of very close dimensions and properties.Metal-organic frameworks,constructed by deliberate connections of metal nodes and organic linkers,have offered a great solution in addressing these challenges due to their atomic precision that allows angstrom-level engineering of pore width[1-3].展开更多
Fluorinated gases(F-gases)play a vital role in the chemical industry and in the fields of air conditioning,refrigeration,health care,and organic synthesis.However,the direct emission of waste gases containing F-gases ...Fluorinated gases(F-gases)play a vital role in the chemical industry and in the fields of air conditioning,refrigeration,health care,and organic synthesis.However,the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances.Developing porous materials for the energy-efficient capture,separation,and recovery of F-gases is highly desired.Recently,as a highly designable porous adsorbents,metal–organic frameworks(MOFs)exhibit excellent selective sorption performance toward F-gases,especially for the recognition and separation of different F-gases with highly similar properties,showing their great potential in F-gases control and recovery.In this review,we discuss the capture and separation of F-gases and their azeotropic,near-azeotropic,and isomeric mixtures in various application scenarios by MOFs,specifically classify and analyze molecular interaction between F-gases and MOFs,and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity,providing a repertoire for future materials design.Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed,and areas for future research endeavors are highlighted.展开更多
We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three ph...We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three phase transitions including a canted antiferromagnetic transition at ~36 K, and two successive structural transitions around 100 K and 110 K, respectively. The temperature dependence of dielectric permittivity and pyroelectric current suggests that the structural transitions induce weak ferroelectricity along the c-axis and antiferroelectricity in the ab plane. A negative thermal expansion along the c-axis is observed between two structural phase transitions, which is ascribed to the abnormal shrinkage of interlayer hydrogen bonding length. Moreover, the ferroelectric/antiferroelectric phase transition temperature shifts towards a higher temperature under a magnetic field, suggesting certain magnetoelectric coupling in the paramagnetic phase. Our study suggests that the layered metal–organic frameworks provide a unique playground for exploring exotic physical properties such as multiferroicity and abnormal thermal expansion.展开更多
Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic propertie...Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.展开更多
Volatile organic compounds(VOCs)are significant indoor and outdoor air pollutants.Thermocatalysis is one of the most common methods for their removal,capable of completely mineralizing VOCs.Nanomaterials derived by py...Volatile organic compounds(VOCs)are significant indoor and outdoor air pollutants.Thermocatalysis is one of the most common methods for their removal,capable of completely mineralizing VOCs.Nanomaterials derived by pyrolytic means,based on the high specific surface area and high tunability of metal-organic frameworks(MOFs),have received increasing attention in the field of efficient catalysis of VOCs.Lanthanide metal-organic frameworks(Ln-MOFs)have significant research value in thermocatalytic applications for VOCs by virtue of their flexible and rich coordination behaviors,Lewis acidity,excellent oxygen storage and discharge capabilities,unique electronic structure properties of lanthanide coordination metals.Herein,a comprehensive review of the recent advances in Ln-MOF-based catalysts for thermally catalyzed VOCs elaborates on the effects based on the structure,including pyrolysis strategy,metal substitution,surface modification,and composite doping.The review addresses the mechanistic issues of Ln-MOF-based catalysts in the thermocatalysis of VOCs and highlights their characteristic advantages as efficient catalysts for VOCs.Finally,this review also summarizes the key issues and challenges,provides perspectives and outlooks on the development and design of Ln-MOFbased catalysts.It serves as a reference for enhancing the performance and selecting appropriate LnMOF-based catalysts for treating VOCs.展开更多
Derivatives of metal-organic frameworks(MOFs)are a promising bifunctional electrocatalysts in electrochemical advanced oxidation processes(EAOPs).These metal/carbon materials overcome the limitations of individual com...Derivatives of metal-organic frameworks(MOFs)are a promising bifunctional electrocatalysts in electrochemical advanced oxidation processes(EAOPs).These metal/carbon materials overcome the limitations of individual components by creating synergistic effects.EAOPs is primarily constrained by the generation and activation of H_(2)O_(2).This article examines the regulatory strategies employed in MOFs derivatives to enhance the production of H_(2)O_(2)via 2e^(-)pathways and its activation to·OH,focusing on preparation techniques,structures,and compositions.The design of these derivatives involves methods such as metal dispersion on the surface of nanocarbons,embedding in carbon shells,and atomic dispersion of metals anchored in porous carbon.MOFs derivatives promote·OH production and enhance wastewater purification through mechanisms such as boosting the Fe(Ⅱ)/Fe(Ⅲ)cycle,facilitating direct 3e^(-)reactions of O_(2),and interacting of O_(2)^(·-).Moreover,the performance and durability of MOFs derivatives in wastewater treatment,particularly in influencing·OH generation within EAOPs,were investigated.This review addresses current challenges and future prospects,offering valuable insights for the development of MOFs derivatives as 3e^(-)ORR electrocatalysts and the advancement of sustainable water treatment technologies.展开更多
The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combinat...The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combination of a high-throughput screening method and grand canonical Monte Carlo simulation was utilized to evaluate and screen 1725 metal–organic frameworks(MOFs)in detail as a means of determining their adsorption performance for CO_(2)/H_(2)gas mixtures.The adsorption and separation performance of double-linker MOFs was comprehensively evaluated using eight evaluation indicators,namely,the largest cavity diameter,accessible surface area,pore occupied accessible volume,porosity,adsorption selectivity,working capacity,adsorbent performance score and percent regeneration.Six optimal performance frameworks were screened to further study their single-component adsorption and binary competitive adsorption of CO_(2)/H_(2)respectively.The CO_(2)adsorption selectivity at different CO_(2)/H_(2)feed ratios was also evaluated,which indicated their excellent adsorption and separation performance.The microscopic adsorption mechanisms for CO_(2)and H_(2)at the molecular level were investigated by analyzing the radial distribution function and density distribution.This study may provide directional guidance and reference for subsequent experiments on the adsorption and separation of CO_(2)/H_(2).展开更多
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
基金support by the National Natural Science Foundation of China(52201077)the Natural Science Foundation of Shandong Province(ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology(0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology(0104060510124).
文摘Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.
基金supported by National Natural Science Foundation of China(22361031,22308260).
文摘Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].
基金the financial support from the National Natural Science Foundation of China(No.22178307)China Southern Power Grid(Grant Nos.0470002022030103HX00002-01).
文摘The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2).
文摘Photocatalytic CO_(2)cycloaddition reaction presents a promising CO_(2)conversion strategy to establish carbon neutrality.Among emerging catalysts,metal‑organic frameworks(MOFs)have been regarded as paradigmshifting photocatalysts for their atomic precision in active site engineering,controllable porosity,and exceptional photochemical stability under ambient conditions.However,inherent limitations persist in conventional MOFs,including restricted solar spectrum utilization,inefficient charge carrier separation,and inadequate epoxide activation ability.Recent breakthroughs address these challenges through multiple strategies:ligand engineering,dopant incorporation,and composite construction.This review systematically maps the evolutionary trajectory of MOF‑based photocatalysts,providing mechanistic insights into structure‑activity relationships and providing insights and directions for the design of high‑performance MOF‑based photocatalysts.
文摘The residues of Al^(3+),Ga^(3+),and In^(3+)in the environment pose an increasingly serious threat to human health and ecosystems.However,their specific and rapid detection remains challenging.In this study,we present a water‑stable cadmium metal‑organic framework(Cd‑MOF)based luminescence probe,which can detect Al^(3+),Ga^(3+),and In^(3+)ions in aqueous solutions via a luminescence“turn‑on”mode.The corresponding detection limits for the Al^(3+),Ga^(3+),and In^(3+)ions were 2.31,3.06,and 2.78μmol·L^(-1),respectively.This probe operated effectively within a pH range of 3‑10 in an all‑aqueous environment.Investigations into the detection mechanism revealed that this“turn‑on”recognition is attributed to the formation of new structures upon ion interaction.
基金financial support from the National Natural Science Foundation of China (22222809, 22308250)the fellowship of the China Postdoctoral Science Foundation(2022TQ0232, 2022M722365)the support from Haihe Laboratory of Sustainable Chemical Transformations
文摘Metal organic frameworks(MOFs)have emerged as promising candidates for atmospheric water harvesting due to their high porosity and tunable functionality.Among diverse MOFs,MOF-303 has demonstrated excellent water adsorption capacity,rapid desorption kinetics and structural stability.Nevertheless,its practical application is still limited by the time-consuming synthesis process and difficultiesin morphological control.To overcome these challenges,a surfactant-mediated microwaveassisted strategy was proposed.Compared to conventional heating methods,microwave irradiation reduced the reaction duration from 24 h to 1 h with a 13%increase in product yield(from 76%to 89%).However,the accelerated nucleation under microwave irradiation resulted in smaller crystal dimensions(from 50 nm±10 nm to 35 nm±10 nm),therefore inducing severe particle agglomeration.To mitigate this morphological drawback,systematic investigations were conducted to evaluate the effects of surfactants’species on crystal growth.Among the selected surfactants,poly(sodium-p-styrene sulfonate)(PSS)was identifiedas an effective morphology-directing agent,achieving uniform crystal sizes with improved monodispersity through preferential adsorption on specificcrystallographic planes of the MOF.Subsequent optimization of synthetic conditions,including temperature(120-160℃),reaction time(15 min^(-1) h),and surfactant concentration,yielded MOF-303 with a yield of 96.37%,with particle uniformity of(35 nm±10 nm)and predominantly blocky crystal morphology.Water adsorption measurements confirmedthat the surfactant-modifiedMOF-303 retained comparable performance to the surfactant-free counterpart,with a maximum capacity(water/MOF)of 0.214 g·g^(-1) at 35%RH.This study establishes a scalable and tunable synthetic protocol for MOF-303,providing critical insights into microwave-accelerated crystal engineering.
基金support from the National Natural Science Foundation of China(22088101,21733003,22365021,22305132)the Inner Mongolia Autonomous Region“Grassland Talents”Project(2024098)+3 种基金the Inner Mongolia Natural Science Foundation Youth Fund(2023QN02014)The Local Talent Project of Inner Mongolia(12000-15042222)the Basic Research Expenses Supported under 45 Years Old of Inner Mongolia(10000-23112101/036)the“Young Academic Talents”Program of Inner Mongolia University 23600-5233706.
文摘As a class of crystalline porous materials,metal-organic frameworks(MOFs)have shown unique advantages in the fields of catalysis,gas storage and separation,but their inherent microporous structure(pore diameter<2 nm)severely limits their application in scenarios such as macromolecular mass transfer and so on.In order to overcome this re-striction,mesoporous MOFs(meso-MOFs)with a larger aperture(2-50 nm)have attracted much attention due to their potential applications in biological macromolecular catalysis,energy storage and other fields.To date,how to accurately regulate its mesopore topology and pore ordering still faces important technical challenges.
基金supported by National Natural Science Foundation of China(Nos.52370025,22176012)BUCEA Post Graduate Innovation Project(No.PG2024086)。
文摘Sludge,the massive by-product of the sewage system,became a major challenge for the wastewater treatment industry.Yet,conventional methods often face challenges like low efficiency,high energy consumption,and environmental pollution.Especially,the improper treatment and disposal of toxic sludge generated from different industrial processes or specific wastewater treatment operations exerted significant pressure and threat to hydrosphere,pedosphere,atmosphere and even biosphere.
基金funded by the University of Science and Technology of Hanoi for the emerging research group“Sustainable Energy and Environmental Development” (SEED).
文摘Cost-effective CO_(2) adsorbents are gaining increasing attention as viable solutions for mitigating climate change.In this study,composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate(CuBTC).Among the different composites synthesized,the ratio of 1:1 between biochar and CuBTC(B 1:1)demonstrated the highest CO_(2) adsorption capacity.Under controlled laboratory conditions(0℃,1 bar,without the influence of ambient moisture or CO_(2) diffusion limitations),B 1:1 achieved a CO_(2) adsorption capacity of 9.8 mmol/g,while under industrial-like conditions(25℃,1 bar,taking into account the impact of ambient moisture and CO_(2) diffusion limitations within a bed of adsorbent),it reached 6.2 mmol/g.These values surpassed those reported for various advanced CO_(2) adsorbents investigated in previous studies.The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites,porosity,and the preservation of the full physical and chemical surface properties of both parentmaterials.Furthermore,the composite exhibited a notable CO_(2)/N_(2) selectivity and improved stability under moisture conditions.These favorable characteristics make B 1:1 a promising candidate for industrial applications.
基金supported by the National Natural Science Foundation of China(22101039,22471027,22311530679)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)the Fundamental Research Funds for the Central Universities(DUT24LK004).
文摘Metal-organic frameworks(MOFs)have garnered widespread attention due to their designability and diversity[1].Customization has always been a pursuit of chemists and materials scientists[2].Topology provides a means of abstracting the complex structures of MOFs by identifying and classifying the fundamental building units and connection patterns,simplifying the understanding of MOF structures[3].
基金financial support of National Key Research and Development Program of China(No.2021YFA1501500)the National Natural Science Foundation of China(Nos.22033008,22220102005,22171265)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZZ103).
文摘The growing environmental concerns regarding rare earth elements in fluorescent powders,along with high production costs,have increased the demand for sustainable alternatives.We propose a promising solution using luminescent metal-organic frameworks(LMOFs)with large surface areas and tunable pore structures,combined with organic carbon quantum dots(CQDs).This study develops a novel white lightemitting diode(WLED)fluorescent powder by incorporating yellow-fluorescent quantum dots(CQDs-Y)into blue-emitting LMOF(ZJU-28),forming the composite material CQDs-Y-n@ZJU-28.The composite exhibits excellent thermal and chemical stability,long-term storage performance,and emits warm white light(CIE:0.3277,0.3281)when subjected to excitation at 365 nm,along with an external quantum efficiency(EQE)of 8.85%.Furthermore,it exhibits tunable emission characteristics and promising LED performance,showcasing a color rendering index(CRI)of 78 and a correlated color temperature of 3384 K.The emitted light undergoes minimal deviation in color towards the white end of the spectrum in the temperature range of 277-437 K,making it an ideal candidate for advanced WLED applications.
基金support from the National Key R&D Program of China(2023YFA1507601)the National Natural Science Foundation of China(52373213,22301176)the Shanghai Pujiang Program(23PJ1405000).
文摘Ultramicroporous materials(pore dimension<7Å,as defined by IUPAC)have emerged as an intriguing class of porous substances with exceptional potential in molecular separation.Current benchmark materials including zeolites face inherent limitations in achieving hyperfine control of pore metrics,which hinder their ability to discriminate and separate molecules of very close dimensions and properties.Metal-organic frameworks,constructed by deliberate connections of metal nodes and organic linkers,have offered a great solution in addressing these challenges due to their atomic precision that allows angstrom-level engineering of pore width[1-3].
基金funded by the National Key Research and Development Program of China(2022YFE0110500)National Natural Science Foundation of China(22376161,52373154,52103181)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe Interdisciplinary Project in Environmental Science and Engineering of Tongji University(2023-3-YB-02)。
文摘Fluorinated gases(F-gases)play a vital role in the chemical industry and in the fields of air conditioning,refrigeration,health care,and organic synthesis.However,the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances.Developing porous materials for the energy-efficient capture,separation,and recovery of F-gases is highly desired.Recently,as a highly designable porous adsorbents,metal–organic frameworks(MOFs)exhibit excellent selective sorption performance toward F-gases,especially for the recognition and separation of different F-gases with highly similar properties,showing their great potential in F-gases control and recovery.In this review,we discuss the capture and separation of F-gases and their azeotropic,near-azeotropic,and isomeric mixtures in various application scenarios by MOFs,specifically classify and analyze molecular interaction between F-gases and MOFs,and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity,providing a repertoire for future materials design.Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed,and areas for future research endeavors are highlighted.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400303)the National Natural Science Foundation of China (Grant No. 12227806)。
文摘We have investigated the magnetic, dielectric, pyroelectric, and thermal expansion properties of a layered perovskite metal–organic framework, [NH_(4)Cl]_(2)[Ni(HCOO)_(2)(NH_(3))_(2)]. The material undergoes three phase transitions including a canted antiferromagnetic transition at ~36 K, and two successive structural transitions around 100 K and 110 K, respectively. The temperature dependence of dielectric permittivity and pyroelectric current suggests that the structural transitions induce weak ferroelectricity along the c-axis and antiferroelectricity in the ab plane. A negative thermal expansion along the c-axis is observed between two structural phase transitions, which is ascribed to the abnormal shrinkage of interlayer hydrogen bonding length. Moreover, the ferroelectric/antiferroelectric phase transition temperature shifts towards a higher temperature under a magnetic field, suggesting certain magnetoelectric coupling in the paramagnetic phase. Our study suggests that the layered metal–organic frameworks provide a unique playground for exploring exotic physical properties such as multiferroicity and abnormal thermal expansion.
基金supported by the National Natural Science Foundation of China(Nos.22201086,22471084,92261204,21925104,and 22431005).
文摘Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.
基金Project supported by the Science and Technology Projects of Fujian Province(2022Y0041)。
文摘Volatile organic compounds(VOCs)are significant indoor and outdoor air pollutants.Thermocatalysis is one of the most common methods for their removal,capable of completely mineralizing VOCs.Nanomaterials derived by pyrolytic means,based on the high specific surface area and high tunability of metal-organic frameworks(MOFs),have received increasing attention in the field of efficient catalysis of VOCs.Lanthanide metal-organic frameworks(Ln-MOFs)have significant research value in thermocatalytic applications for VOCs by virtue of their flexible and rich coordination behaviors,Lewis acidity,excellent oxygen storage and discharge capabilities,unique electronic structure properties of lanthanide coordination metals.Herein,a comprehensive review of the recent advances in Ln-MOF-based catalysts for thermally catalyzed VOCs elaborates on the effects based on the structure,including pyrolysis strategy,metal substitution,surface modification,and composite doping.The review addresses the mechanistic issues of Ln-MOF-based catalysts in the thermocatalysis of VOCs and highlights their characteristic advantages as efficient catalysts for VOCs.Finally,this review also summarizes the key issues and challenges,provides perspectives and outlooks on the development and design of Ln-MOFbased catalysts.It serves as a reference for enhancing the performance and selecting appropriate LnMOF-based catalysts for treating VOCs.
基金financially supported by National Natural Science Foundation of China(No.22302170)Science Research Project of Hebei Education Department(No.QN2024256)。
文摘Derivatives of metal-organic frameworks(MOFs)are a promising bifunctional electrocatalysts in electrochemical advanced oxidation processes(EAOPs).These metal/carbon materials overcome the limitations of individual components by creating synergistic effects.EAOPs is primarily constrained by the generation and activation of H_(2)O_(2).This article examines the regulatory strategies employed in MOFs derivatives to enhance the production of H_(2)O_(2)via 2e^(-)pathways and its activation to·OH,focusing on preparation techniques,structures,and compositions.The design of these derivatives involves methods such as metal dispersion on the surface of nanocarbons,embedding in carbon shells,and atomic dispersion of metals anchored in porous carbon.MOFs derivatives promote·OH production and enhance wastewater purification through mechanisms such as boosting the Fe(Ⅱ)/Fe(Ⅲ)cycle,facilitating direct 3e^(-)reactions of O_(2),and interacting of O_(2)^(·-).Moreover,the performance and durability of MOFs derivatives in wastewater treatment,particularly in influencing·OH generation within EAOPs,were investigated.This review addresses current challenges and future prospects,offering valuable insights for the development of MOFs derivatives as 3e^(-)ORR electrocatalysts and the advancement of sustainable water treatment technologies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304079,11404094,and 11504088)Science and Technology Research Project of Henan Science and Technology Department(Grant No.182102410076)。
文摘The capture of CO_(2)from CO_(2)/H_(2)gas mixtures in syngas is a crucial issue for hydrogen production from steam methane reforming in industry,as the presence of CO_(2)directly affects the purity of H_(2).A combination of a high-throughput screening method and grand canonical Monte Carlo simulation was utilized to evaluate and screen 1725 metal–organic frameworks(MOFs)in detail as a means of determining their adsorption performance for CO_(2)/H_(2)gas mixtures.The adsorption and separation performance of double-linker MOFs was comprehensively evaluated using eight evaluation indicators,namely,the largest cavity diameter,accessible surface area,pore occupied accessible volume,porosity,adsorption selectivity,working capacity,adsorbent performance score and percent regeneration.Six optimal performance frameworks were screened to further study their single-component adsorption and binary competitive adsorption of CO_(2)/H_(2)respectively.The CO_(2)adsorption selectivity at different CO_(2)/H_(2)feed ratios was also evaluated,which indicated their excellent adsorption and separation performance.The microscopic adsorption mechanisms for CO_(2)and H_(2)at the molecular level were investigated by analyzing the radial distribution function and density distribution.This study may provide directional guidance and reference for subsequent experiments on the adsorption and separation of CO_(2)/H_(2).