Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy R...In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.展开更多
Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical...Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical conductivity and significant volume changes have limited their electrochemical stability and practical application performance.This work proposes a universal doping strategy for the preparation of tin-phthalic acid complexes(Sn-MOF)doped with metal atoms(Al,Cr,Mn,Fe,Co,Ni,Cu,Zn).Metal atoms are uniformly dispersed within Sn-MOF for enhancing electrical conductivity and accommodating appropriate volume expansion,resulting in improved rate capability and cycling stability.Additionally,compared to a series of doped Sn-MOF,Zn-doped Sn-MOF exhibits the most exceptional electrochemical performance with a high reversible capacity of 1131 mAh·g^(-1)and stable cycling performance at a current density of 0.5 A·g^(-1),delivering a capacity of 1065 mAh·g^(-1)after 500 cycles.Zn-doping catalyzes the lithiation reaction between Sn-MOF and Li^(+),promoting their reaction kinetics during the first cycle.Furthermore,the Zn-doped Sn-MOF is inclined to form a thin and stable solid electrolyte interface film to maintain cyclic stability.展开更多
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi...In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.展开更多
Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conducti...Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conductivity and huge volume changes restricted their electrochemical stability and practical utilization.Herein,Snbased anode with superior electrochemical performance,including a high reversible capacity of 1050.1 mAh·g^(-1)at 2 A·g^(-1)and a stable capacity of 1105.5 mAh·g^(-1)after 500 cycles at 1 A·g^(-1),was fabricated via a low-temperature calcination strategy from Sn metal organic complexes.The low-temperature calcination process regulates Sn-O bond and prevents the agglomeration of SnO_(2),generating highly dispersed SnO_(2) decorated metal organic complexes and providing sufficient active sites for ion storage.Ex situ characterizations expound that the undecomposed Sn-based metal organic complexes could be transformed into SnO_(2) during lithiation and delithiation,which enhances the electrical conductivity and induces a strong pseudo-capacitive behavior,accelerating the electrochemical kinetics;the multiple solid electrolyte interface with inflexible LiF and flexible ROCO_(2)Li buffers the volume variation of the electrode,resulting in its high electrochemical stability.This work provides a simple strategy for preparing excellent Sn-based anodes from metal organic complexes and reveals the lithium storage mechanism of the prepared Snbased anode.展开更多
Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecu...Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecular area which becomes a fascinating topic with the rapid development of biology,chemistry and materials science.In this review,the recent advances about ATP interacted with functional small organic compounds and metal coordinated complexes are summarized.The design principles,its function as an active supramolecular matrix,the associated non-covalent binding modes and assembly induced properties including the optical properties,morphologies are presented in details.Besides,their applications for metal ion detecting,enzyme activity monitoring and drug delivery are described due to their excellently dynamic assembly properties,adjustability,and response to stimuli.Finally,an overview of the existing challenges and future prospects of ATP-induced supramolecular systems are also discussed.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp...To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.展开更多
This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is ...This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.展开更多
Recovery processes of secondary resources usually encounter problems because of the diverse com- positions of wastes. To enhance the applicability of tradi- tional hydrometallurgical process toward secondary resources...Recovery processes of secondary resources usually encounter problems because of the diverse com- positions of wastes. To enhance the applicability of tradi- tional hydrometallurgical process toward secondary resources, the adjustment of components is necessary. In traditional hydrometallurgical separation, precipitation and complexation are extensively used. However, their com- bination as a specific metal separation method has not yet been studied in detail. This approach is very promising for solving problems caused by changeable components during recycling processes of secondary resources. This paper reviews the effects of precipitation and complexation in metal separation processes, and a metal separation method system of "complexation-precipitation" developed to adjust the components of secondary resources is introduced.展开更多
On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the ma...On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .展开更多
This is a mini-review-like article including our recent results and methods for (new) metal oxides and (previously reported) composite materials composed of metal complexes and metal oxides for comparison to enhan...This is a mini-review-like article including our recent results and methods for (new) metal oxides and (previously reported) composite materials composed of metal complexes and metal oxides for comparison to enhance anisotropic structural changes intentionally. Some complex inorganic oxides are known that they may be promising color materials (absorbing visible light of certain wavelengths region) having potential application for environmentally benign catalysts, for example, photocatalysts. Chiral copper(Ⅱ) complexes having bidentate amine ligands ([CuL2]2+) can be acted as cationic building blocks of bimetallic metal complexes. We have prepared some chiral bimetallic complexes with various anionic metal complexes such as [PtCl4]2-, [M02O7]2 and Mn12 clusters (typical single-molecule magnets) which characterized by means of solid-state electronic and CD (circular dichroism) spectra, IR (infrared) spectra, synchrotron XRD (X-ray diffraction) and XAS (soft X-ray absorption spectroscopy). By sintering these precursor chiral bimetallic complexes, we have prepared complex inorganic oxides from them. The IR spectra indicated substituting metal-ligand bonds and losing organic moieties. The XRD pattern indicated complete changes of crystal structures. The XAS revealed replacing coordination atoms as well as oxidation of valences of metal ions. Furthermore, we will also investigate possibility of patterning by homogeneous precipitation method as bimetallic complexes to prepare desirable complex inorganic oxides.展开更多
Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis ...Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg^2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg^2+, Cu^2+, Ag^+, Au^3+, Zn^2+, Cd^2+, Fe^3+, Mn^2+, Pb^2+, Yb^3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg^2+ was shown to be a potent inhibitor of papain with a Kiof 2 × 10^-7 mol·L^-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg^2+. These evidences supported that Hg^2+ might bind to the catalytic site of papain. Interestingly, Hg (Ⅱ) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7 × 10^-6 mol·L^-1, whose potency is close to a well known mercury compound, thimerosal (Ki=2.7 × 10^-6). In addition, Hg (Ⅱ) polysulfide complexes exhibit good permeability ( 1.9 × 10-5 cm· s^-1) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds.展开更多
Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing at...Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.展开更多
To synthesize and characterize a novel metal complex of Mn(II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, 1H NMR, and 13 C NMR data ...To synthesize and characterize a novel metal complex of Mn(II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, 1H NMR, and 13 C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG 2, HeL a, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II)(emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II)(emodin)2·2H2O could be studied further as a promising anticancer drug.展开更多
Amine elimination of Ln[N(SiMe3)2]3(μ-Cl)Li(THF)3 with aminophenol H[ON]{H[ON]=2-(CH2 NC5 H10)-4,6-tBu2-C6 H3OH}in 1:2 molar ratio in THF gave the monometallic rare-earth metal amide complexes[ON]2 LnN(SiMe3)2(Ln=Yb(...Amine elimination of Ln[N(SiMe3)2]3(μ-Cl)Li(THF)3 with aminophenol H[ON]{H[ON]=2-(CH2 NC5 H10)-4,6-tBu2-C6 H3OH}in 1:2 molar ratio in THF gave the monometallic rare-earth metal amide complexes[ON]2 LnN(SiMe3)2(Ln=Yb(1),Y(2),Gd(3),Sm(4),Nd(5))in 57%-73%isolated yields.All these complexes were characterized by elemental analysis.The molecular structures of complexes 1-4 were determined by single crystal X-ray diffraction.These complexes are highly active for L-Iactide polymerization to give high molecular weight polymers with unimodal molecular weight distributions.In addition,these complexes can also initiate rac-lactide polymerization with high activity to afford heterotactic-rich polylactides.展开更多
Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff ...Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes. 2-(2'-Hydroxy)ben- zylideneaminonaphthothiazole was converted to its Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method. Results: All the compounds moderately inhibited the growth of Cram positive and Gram negative bacteria. In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent. Conclusion: The results obtained validate the hypothesis that Schiff bases having substitution with halogens, hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity. The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.展开更多
Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental an...Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental analyses, UV-Vis spectra, infrared photoacoustic spectra, 1H NMR spectra, molar conductance and differential scanning calorimetry(DSC). The ligand and the Zn complex show liquid crystalline behavior. According to the DSC thermogram of the Zn complex, it exhibits a lower phase transition temperature -7.453 ℃ and a wide mesophase temperature span, 77 ℃.展开更多
Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact...Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br^- and N3^-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand.展开更多
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
文摘In this article the affiliation of Jin-Ke Shen,Nai-Teng Wu,Li-Yuan Wang,Gang Jiang,Jin Li,Gui-Long Liu,Xian-Ming Liu were incorrectly given as:State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,School of Chemical Engineering and Technology,Xinjiang University,Urumqi 830046,China.
基金support from Natural Science Foundations of Henan Province(Nos.222300420502 and 232300420093)the Program for Science and Technology Innovation Talents in Universities of Henan Province(No.24HASTIT006)the Key Science and Technology Program of Henan Province(No.222102240044)。
文摘Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical conductivity and significant volume changes have limited their electrochemical stability and practical application performance.This work proposes a universal doping strategy for the preparation of tin-phthalic acid complexes(Sn-MOF)doped with metal atoms(Al,Cr,Mn,Fe,Co,Ni,Cu,Zn).Metal atoms are uniformly dispersed within Sn-MOF for enhancing electrical conductivity and accommodating appropriate volume expansion,resulting in improved rate capability and cycling stability.Additionally,compared to a series of doped Sn-MOF,Zn-doped Sn-MOF exhibits the most exceptional electrochemical performance with a high reversible capacity of 1131 mAh·g^(-1)and stable cycling performance at a current density of 0.5 A·g^(-1),delivering a capacity of 1065 mAh·g^(-1)after 500 cycles.Zn-doping catalyzes the lithiation reaction between Sn-MOF and Li^(+),promoting their reaction kinetics during the first cycle.Furthermore,the Zn-doped Sn-MOF is inclined to form a thin and stable solid electrolyte interface film to maintain cyclic stability.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20403,22006047)Natural Science Foundation of Hebei Province(Nos.E2021203140,B2021203016)Hebei Industrial Innovation and Entrepreneurship team(No.215A7608D)。
文摘In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.
基金financially supported by the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.24HASTIT006)the Natural Science Foundations of China(No.42002040)+2 种基金Natural Science Foundations of Henan Province(No.222300420502)Key Science and Technology Program of Henan Province(No.222102240044)Key Scientific Research Projects in Colleges and Universities of Henan Province(No.21B610010)。
文摘Sn-based metal organic complexes with coordination bonds,multi-active sites,and high theoretical capacity have attracted much attention as promising anodes for lithium ion batteries.However,the low electrical conductivity and huge volume changes restricted their electrochemical stability and practical utilization.Herein,Snbased anode with superior electrochemical performance,including a high reversible capacity of 1050.1 mAh·g^(-1)at 2 A·g^(-1)and a stable capacity of 1105.5 mAh·g^(-1)after 500 cycles at 1 A·g^(-1),was fabricated via a low-temperature calcination strategy from Sn metal organic complexes.The low-temperature calcination process regulates Sn-O bond and prevents the agglomeration of SnO_(2),generating highly dispersed SnO_(2) decorated metal organic complexes and providing sufficient active sites for ion storage.Ex situ characterizations expound that the undecomposed Sn-based metal organic complexes could be transformed into SnO_(2) during lithiation and delithiation,which enhances the electrical conductivity and induces a strong pseudo-capacitive behavior,accelerating the electrochemical kinetics;the multiple solid electrolyte interface with inflexible LiF and flexible ROCO_(2)Li buffers the volume variation of the electrode,resulting in its high electrochemical stability.This work provides a simple strategy for preparing excellent Sn-based anodes from metal organic complexes and reveals the lithium storage mechanism of the prepared Snbased anode.
基金the Zhejiang Provincial Natural Science Foundation of China(Nos.LR22B010001,LQ23B010001)the National Natural Science Foundation of China(Nos.22201057,21871297)+1 种基金the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(No.2019B151502051)the Hangzhou Normal University(Nos.2021QDL001,2021QDL065)。
文摘Adenosine triphosphate(ATP),known as a common metabolic product in organism,is not only importance to provide energy in various cellular activities but also is widely explored in the bio-inspired synthetic supramolecular area which becomes a fascinating topic with the rapid development of biology,chemistry and materials science.In this review,the recent advances about ATP interacted with functional small organic compounds and metal coordinated complexes are summarized.The design principles,its function as an active supramolecular matrix,the associated non-covalent binding modes and assembly induced properties including the optical properties,morphologies are presented in details.Besides,their applications for metal ion detecting,enzyme activity monitoring and drug delivery are described due to their excellently dynamic assembly properties,adjustability,and response to stimuli.Finally,an overview of the existing challenges and future prospects of ATP-induced supramolecular systems are also discussed.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
文摘To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2.
文摘This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.
基金financially supported by the National High-tech R&D Program of China(No.2013AA040208)the National Natural Science Foundation of China(No.51304010)the Beijing Natural Science Foundation(No.2132016)
文摘Recovery processes of secondary resources usually encounter problems because of the diverse com- positions of wastes. To enhance the applicability of tradi- tional hydrometallurgical process toward secondary resources, the adjustment of components is necessary. In traditional hydrometallurgical separation, precipitation and complexation are extensively used. However, their com- bination as a specific metal separation method has not yet been studied in detail. This approach is very promising for solving problems caused by changeable components during recycling processes of secondary resources. This paper reviews the effects of precipitation and complexation in metal separation processes, and a metal separation method system of "complexation-precipitation" developed to adjust the components of secondary resources is introduced.
文摘On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods .
文摘This is a mini-review-like article including our recent results and methods for (new) metal oxides and (previously reported) composite materials composed of metal complexes and metal oxides for comparison to enhance anisotropic structural changes intentionally. Some complex inorganic oxides are known that they may be promising color materials (absorbing visible light of certain wavelengths region) having potential application for environmentally benign catalysts, for example, photocatalysts. Chiral copper(Ⅱ) complexes having bidentate amine ligands ([CuL2]2+) can be acted as cationic building blocks of bimetallic metal complexes. We have prepared some chiral bimetallic complexes with various anionic metal complexes such as [PtCl4]2-, [M02O7]2 and Mn12 clusters (typical single-molecule magnets) which characterized by means of solid-state electronic and CD (circular dichroism) spectra, IR (infrared) spectra, synchrotron XRD (X-ray diffraction) and XAS (soft X-ray absorption spectroscopy). By sintering these precursor chiral bimetallic complexes, we have prepared complex inorganic oxides from them. The IR spectra indicated substituting metal-ligand bonds and losing organic moieties. The XRD pattern indicated complete changes of crystal structures. The XAS revealed replacing coordination atoms as well as oxidation of valences of metal ions. Furthermore, we will also investigate possibility of patterning by homogeneous precipitation method as bimetallic complexes to prepare desirable complex inorganic oxides.
文摘Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg^2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg^2+, Cu^2+, Ag^+, Au^3+, Zn^2+, Cd^2+, Fe^3+, Mn^2+, Pb^2+, Yb^3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg^2+ was shown to be a potent inhibitor of papain with a Kiof 2 × 10^-7 mol·L^-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg^2+. These evidences supported that Hg^2+ might bind to the catalytic site of papain. Interestingly, Hg (Ⅱ) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7 × 10^-6 mol·L^-1, whose potency is close to a well known mercury compound, thimerosal (Ki=2.7 × 10^-6). In addition, Hg (Ⅱ) polysulfide complexes exhibit good permeability ( 1.9 × 10-5 cm· s^-1) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds.
基金the National Natural Science Foundation of China(NSFC)(No.41672237)the Beijing Natural Science Foundation(No.8192040)。
文摘Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.
基金supported by the Natural Science Foundation Project of CQ CSTC(No.2011BB5109)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(KJTD201325)+1 种基金Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology(Chongqing University),Ministry of Education(CQKLBST-2012007)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘To synthesize and characterize a novel metal complex of Mn(II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, 1H NMR, and 13 C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG 2, HeL a, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II)(emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II)(emodin)2·2H2O could be studied further as a promising anticancer drug.
基金Project supported by the National Natural Science Foundation of China(21572205,21971130,21871198,21674070)the Natural Science Foundation of Zhejiang Province(LY19B040002)+2 种基金the State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciencesthe Natural Science Foundation of Ningbo Municipal(2019A610030,2019A610129)K.C.Wong Magna Fund in Ningbo University。
文摘Amine elimination of Ln[N(SiMe3)2]3(μ-Cl)Li(THF)3 with aminophenol H[ON]{H[ON]=2-(CH2 NC5 H10)-4,6-tBu2-C6 H3OH}in 1:2 molar ratio in THF gave the monometallic rare-earth metal amide complexes[ON]2 LnN(SiMe3)2(Ln=Yb(1),Y(2),Gd(3),Sm(4),Nd(5))in 57%-73%isolated yields.All these complexes were characterized by elemental analysis.The molecular structures of complexes 1-4 were determined by single crystal X-ray diffraction.These complexes are highly active for L-Iactide polymerization to give high molecular weight polymers with unimodal molecular weight distributions.In addition,these complexes can also initiate rac-lactide polymerization with high activity to afford heterotactic-rich polylactides.
文摘Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes. 2-(2'-Hydroxy)ben- zylideneaminonaphthothiazole was converted to its Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method. Results: All the compounds moderately inhibited the growth of Cram positive and Gram negative bacteria. In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent. Conclusion: The results obtained validate the hypothesis that Schiff bases having substitution with halogens, hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity. The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.
文摘Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental analyses, UV-Vis spectra, infrared photoacoustic spectra, 1H NMR spectra, molar conductance and differential scanning calorimetry(DSC). The ligand and the Zn complex show liquid crystalline behavior. According to the DSC thermogram of the Zn complex, it exhibits a lower phase transition temperature -7.453 ℃ and a wide mesophase temperature span, 77 ℃.
基金the National Natural Science Foundation of China(No.50273031)China Postdoctoral Science Foundation(No.20060400339).
文摘Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br^- and N3^-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand.