In total knee arthroplasty (TKA), a treatment of bone defect varies depending on the location and extent of defect and requires proper surgical procedure. Metal augmentation is readily available for both femoral and t...In total knee arthroplasty (TKA), a treatment of bone defect varies depending on the location and extent of defect and requires proper surgical procedure. Metal augmentation is readily available for both femoral and tibial bone defects. We report the operative technique of modular metal augmentation using a downsized block for ambiguous proximal tibial and distal femoral bone defects in primary and revision TKA. Regarding bone defects, bone loss can be minimized by using a different size of metal augmentation, and suitable reinforcement for bone defects can be achieved. Once our technique is properly used, it will be very helpful in treating bone defects.展开更多
First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spi...First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spin polarized density functional theory(DFT+U) are used to study the structural,electronic,and magnetic properties of cubic perovskite compounds RbXF3(X = Mn,V,Co,and Fe).It is found that the calculated structural parameters,i.e.,lattice constant,bulk modulus,and its pressure derivative are in good agreement with the previous results.Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3.Cohesive energies and the magnetic moments of RbXF3 have also been calculated.The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3,making these materials suitable for spintronic applications.展开更多
文摘In total knee arthroplasty (TKA), a treatment of bone defect varies depending on the location and extent of defect and requires proper surgical procedure. Metal augmentation is readily available for both femoral and tibial bone defects. We report the operative technique of modular metal augmentation using a downsized block for ambiguous proximal tibial and distal femoral bone defects in primary and revision TKA. Regarding bone defects, bone loss can be minimized by using a different size of metal augmentation, and suitable reinforcement for bone defects can be achieved. Once our technique is properly used, it will be very helpful in treating bone defects.
文摘First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spin polarized density functional theory(DFT+U) are used to study the structural,electronic,and magnetic properties of cubic perovskite compounds RbXF3(X = Mn,V,Co,and Fe).It is found that the calculated structural parameters,i.e.,lattice constant,bulk modulus,and its pressure derivative are in good agreement with the previous results.Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3.Cohesive energies and the magnetic moments of RbXF3 have also been calculated.The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3,making these materials suitable for spintronic applications.