This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects o...Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.展开更多
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet...Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.展开更多
Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features s...Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features selection approach plays an important role in constructing effective network IDS.Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy.Therefore,this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack.The proposed model has two objectives;The first one is to reduce the number of selected features for Network IDS.This objective was met through the hybridization of bioinspired metaheuristic algorithms with each other in a hybrid model.The algorithms used in this paper are particle swarm optimization(PSO),multiverse optimizer(MVO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),firefly algorithm(FFA),and bat algorithm(BAT).The second objective is to detect the generic attack using machine learning classifiers.This objective was met through employing the support vector machine(SVM),C4.5(J48)decision tree,and random forest(RF)classifiers.UNSW-NB15 dataset used for assessing the effectiveness of the proposed hybrid model.UNSW-NB15 dataset has nine attacks type.The generic attack is the highest among them.Therefore,the proposed model aims to identify generic attacks.My data showed that J48 is the best classifier compared to SVM and RF for the time needed to build the model.In terms of features reduction for the classification,my data show that the MFO-WOA and FFA-GWO models reduce the features to 15 features with close accuracy,sensitivity and F-measure of all features,whereas MVO-BAT model reduces features to 24 features with the same accuracy,sensitivity and F-measure of all features for all classifiers.展开更多
In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education O...In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education Optimization(LEO)is introduced,which is used to solve optimization problems.LEO is inspired by the foreign language education process in which a language teacher trains the students of language schools in the desired language skills and rules.LEO is mathematically modeled in three phases:(i)students selecting their teacher,(ii)students learning from each other,and(iii)individual practice,considering exploration in local search and exploitation in local search.The performance of LEO in optimization tasks has been challenged against fifty-two benchmark functions of a variety of unimodal,multimodal types and the CEC 2017 test suite.The optimization results show that LEO,with its acceptable ability in exploration,exploitation,and maintaining a balance between them,has efficient performance in optimization applications and solution presentation.LEO efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms.Analyses of the simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly superior andmore competitive in combating the compared algorithms.The implementation results of the proposed approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization applications.展开更多
Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 20...Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019(COVID-19)pandemic.The used model is the most appropriate among the three most common location models utilized to solve healthcare problems(the set covering model,the maximal covering model,and the P-median model).The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints.The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction.The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt.In this case study,a discrete binary gaining–sharing knowledge-based optimization(DBGSK)algorithm is proposed.The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life.The DBGSK algorithm mainly depends on two junior and senior binary stages.These two stages enable DBGSK to explore and exploit the search space efficiently and effectively,and thus it can solve problems in binary space.展开更多
This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is es...This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.展开更多
Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to ...Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively).展开更多
Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessa...Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessary for the estimation of yields in these reactions.This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation.The algorithms were evaluated based on computational time and the number of selected descriptors.Analyses show that robust performance is obtained with more descriptors,compared to cases where fewer descriptors are selected.The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets,and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R^(2) of 0.9423.The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation.The ensemble model has also shown robust performance in its yield estimation ability and efficiency.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led...Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.展开更多
Optimization is the process of creating the best possible outcome while taking into consideration the given conditions.The ultimate goal of optimization is to maximize or minimize the desired effects to meet the techn...Optimization is the process of creating the best possible outcome while taking into consideration the given conditions.The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements.When faced with a problem that has several possible solutions,an optimization technique is used to identify the best one.This involves checking different search domains at the right time,depending on the specific problem.To solve these optimization problems,nature-inspired algorithms are used as part of stochastic methods.In civil engineering,numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques.In such points,metaheuristic algorithms can be a more useful and practical option for civil engineering usages.These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one.This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics.展开更多
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee...Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis.展开更多
The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and stron...The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and strong global search capabilities,this algorithm finds application across diverse optimization problem domains.However,in the face of increasingly complex optimization challenges,the Bat algorithm encounters certain limitations,such as slow convergence and sensitivity to initial solutions.In order to tackle these challenges,the present study incorporates a range of optimization compo-nents into the Bat algorithm,thereby proposing a variant called PKEBA.A projection screening strategy is implemented to mitigate its sensitivity to initial solutions,thereby enhancing the quality of the initial solution set.A kinetic adaptation strategy reforms exploration patterns,while an elite communication strategy enhances group interaction,to avoid algorithm from local optima.Subsequently,the effectiveness of the proposed PKEBA is rigorously evaluated.Testing encompasses 30 benchmark functions from IEEE CEC2014,featuring ablation experiments and comparative assessments against classical algorithms and their variants.Moreover,real-world engineering problems are employed as further validation.The results conclusively demonstrate that PKEBA ex-hibits superior convergence and precision compared to existing algorithms.展开更多
Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been prop...Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw...This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world.展开更多
The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are c...The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios.展开更多
Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental ...Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental inspiration in designing SOA is human efforts to acquire and improve skills.Various stages of SOA are mathematically modeled in two phases,including:(i)exploration,skill acquisition from experts and(ii)exploitation,skill improvement based on practice and individual effort.The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The optimization results show that SOA,by balancing exploration and exploitation,is able to provide good performance and appropriate solutions for optimization problems.In addition,the performance of SOA in optimization is compared with ten metaheuristic algorithms to evaluate the quality of the results obtained by the proposed approach.Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achievesmuch more competitive results.展开更多
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
基金supported by the Fundamental Research Funds for the Central Universities(XJ2023005201)the National Natural Science Foundation of China(NSFC:U2267217,42141011,and 42002254).
文摘Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.
基金supported by the National Natural Science Foundation Project of China(Nos.72088101 and 42177164)the Distinguished Youth Science Foundation of Hunan Province of China(No.2022JJ10073)The first author was funded by China Scholarship Council(No.202106370038).
文摘Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.
基金funded by The World Islamic Sciences and Education University。
文摘Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features selection approach plays an important role in constructing effective network IDS.Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy.Therefore,this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack.The proposed model has two objectives;The first one is to reduce the number of selected features for Network IDS.This objective was met through the hybridization of bioinspired metaheuristic algorithms with each other in a hybrid model.The algorithms used in this paper are particle swarm optimization(PSO),multiverse optimizer(MVO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),firefly algorithm(FFA),and bat algorithm(BAT).The second objective is to detect the generic attack using machine learning classifiers.This objective was met through employing the support vector machine(SVM),C4.5(J48)decision tree,and random forest(RF)classifiers.UNSW-NB15 dataset used for assessing the effectiveness of the proposed hybrid model.UNSW-NB15 dataset has nine attacks type.The generic attack is the highest among them.Therefore,the proposed model aims to identify generic attacks.My data showed that J48 is the best classifier compared to SVM and RF for the time needed to build the model.In terms of features reduction for the classification,my data show that the MFO-WOA and FFA-GWO models reduce the features to 15 features with close accuracy,sensitivity and F-measure of all features,whereas MVO-BAT model reduces features to 24 features with the same accuracy,sensitivity and F-measure of all features for all classifiers.
基金supported by the Project of Specific Research PˇrF UHK No.2104/2022-2023,University of Hradec Kralove,Czech Republic.
文摘In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education Optimization(LEO)is introduced,which is used to solve optimization problems.LEO is inspired by the foreign language education process in which a language teacher trains the students of language schools in the desired language skills and rules.LEO is mathematically modeled in three phases:(i)students selecting their teacher,(ii)students learning from each other,and(iii)individual practice,considering exploration in local search and exploitation in local search.The performance of LEO in optimization tasks has been challenged against fifty-two benchmark functions of a variety of unimodal,multimodal types and the CEC 2017 test suite.The optimization results show that LEO,with its acceptable ability in exploration,exploitation,and maintaining a balance between them,has efficient performance in optimization applications and solution presentation.LEO efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms.Analyses of the simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly superior andmore competitive in combating the compared algorithms.The implementation results of the proposed approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization applications.
基金funded by Deanship of Scientific Research,King Saud University,through the Vice Deanship of Scientific Research.
文摘Determining the optimum location of facilities is critical in many fields,particularly in healthcare.This study proposes the application of a suitable location model for field hospitals during the novel coronavirus 2019(COVID-19)pandemic.The used model is the most appropriate among the three most common location models utilized to solve healthcare problems(the set covering model,the maximal covering model,and the P-median model).The proposed nonlinear binary constrained model is a slight modification of the maximal covering model with a set of nonlinear constraints.The model is used to determine the optimum location of field hospitals for COVID-19 risk reduction.The designed mathematical model and the solution method are used to deploy field hospitals in eight governorates in Upper Egypt.In this case study,a discrete binary gaining–sharing knowledge-based optimization(DBGSK)algorithm is proposed.The DBGSK algorithm is based on how humans acquire and share knowledge throughout their life.The DBGSK algorithm mainly depends on two junior and senior binary stages.These two stages enable DBGSK to explore and exploit the search space efficiently and effectively,and thus it can solve problems in binary space.
文摘This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm.
基金a grant from the“Research Center of the Female Scientific and Medical Colleges”,the Deanship of Scientific Research,King Saud University.
文摘Medical data classification(MDC)refers to the application of classification methods on medical datasets.This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis.To gain experts’trust,the prediction and the reasoning behind it are equally important.Accordingly,we confine our research to learn rule-based models because they are transparent and comprehensible.One approach to MDC involves the use of metaheuristic(MH)algorithms.Here we report on the development and testing of a novel MH algorithm:IWD-Miner.This algorithm can be viewed as a fusion of Intelligent Water Drops(IWDs)and AntMiner+.It was subjected to a four-stage sensitivity analysis to optimize its performance.For this purpose,21 publicly available medical datasets were used from the Machine Learning Repository at the University of California Irvine.Interestingly,there were only limited differences in performance between IWDMiner variants which is suggestive of its robustness.Finally,using the same 21 datasets,we compared the performance of the optimized IWD-Miner against two extant algorithms,AntMiner+and J48.The experiments showed that both rival algorithms are considered comparable in the effectiveness to IWD-Miner,as confirmed by the Wilcoxon nonparametric statistical test.Results suggest that IWD-Miner is more efficient than AntMiner+as measured by the average number of fitness evaluations to a solution(1,386,621.30 vs.2,827,283.88 fitness evaluations,respectively).J48 exhibited higher accuracy on average than IWD-Miner(79.58 vs.73.65,respectively)but produced larger models(32.82 leaves vs.8.38 terms,respectively).
基金The work described in this paper was substantially supported by the grant from the Research Grants Council of the Hong Kong Special Administrative Region[CityU 11200218]one grant from the Health and Medical Research Fund,the Food and Health Bureau,The Government of the Hong Kong Special Administrative Region[07181426]+1 种基金and the funding from Hong Kong Institute for Data Science(HKIDS)at City University of Hong Kong.The work described in this paper was partially supported by two grants from City University of Hong Kong(CityU 11202219,CityU 11203520)This research was substantially sponsored by the research project(Grant No.32000464)supported by the National Natural Science Foundation of China and was substantially supported by the Shenzhen Research Institute,City University of Hong Kong.The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research with the project number(442/77).
文摘Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessary for the estimation of yields in these reactions.This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation.The algorithms were evaluated based on computational time and the number of selected descriptors.Analyses show that robust performance is obtained with more descriptors,compared to cases where fewer descriptors are selected.The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets,and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R^(2) of 0.9423.The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation.The ensemble model has also shown robust performance in its yield estimation ability and efficiency.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
文摘Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.
文摘Optimization is the process of creating the best possible outcome while taking into consideration the given conditions.The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements.When faced with a problem that has several possible solutions,an optimization technique is used to identify the best one.This involves checking different search domains at the right time,depending on the specific problem.To solve these optimization problems,nature-inspired algorithms are used as part of stochastic methods.In civil engineering,numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques.In such points,metaheuristic algorithms can be a more useful and practical option for civil engineering usages.These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one.This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics.
基金funded by the National Key Research and Development Program(Grant No.2022YFB3706904).
文摘Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis.
基金partially supported by MRC(MC_PC_17171)Royal Society(RP202G0230)+8 种基金BHF(AA/18/3/34220)Hope Foundation for Cancer Research(RM60G0680)GCRF(20P2PF11)Sino-UK Industrial Fund(RP202G0289)LIAS(20P2ED10,20P2RE969)Data Science Enhancement Fund(20P2RE237)Fight for Sight(24NN201)Sino-UK Education Fund(OP202006)BBSRC(RM32G0178B8).
文摘The Bat algorithm,a metaheuristic optimization technique inspired by the foraging behaviour of bats,has been employed to tackle optimization problems.Known for its ease of implementation,parameter tunability,and strong global search capabilities,this algorithm finds application across diverse optimization problem domains.However,in the face of increasingly complex optimization challenges,the Bat algorithm encounters certain limitations,such as slow convergence and sensitivity to initial solutions.In order to tackle these challenges,the present study incorporates a range of optimization compo-nents into the Bat algorithm,thereby proposing a variant called PKEBA.A projection screening strategy is implemented to mitigate its sensitivity to initial solutions,thereby enhancing the quality of the initial solution set.A kinetic adaptation strategy reforms exploration patterns,while an elite communication strategy enhances group interaction,to avoid algorithm from local optima.Subsequently,the effectiveness of the proposed PKEBA is rigorously evaluated.Testing encompasses 30 benchmark functions from IEEE CEC2014,featuring ablation experiments and comparative assessments against classical algorithms and their variants.Moreover,real-world engineering problems are employed as further validation.The results conclusively demonstrate that PKEBA ex-hibits superior convergence and precision compared to existing algorithms.
基金supported by the National Natural Science Foundation of China (52275480)the Guizhou Provincial Science and Technology Program of Qiankehe Zhongdi Guiding ([2023]02)+1 种基金the Guizhou Provincial Science and Technology Program of Qiankehe Platform Talent Project (GCC[2023]001)the Guizhou Provincial Science and Technology Project of Qiankehe Platform Project (KXJZ[2024]002).
文摘Metaheuristic algorithms are pivotal in cloud task scheduling. However, the complexity and uncertainty of the scheduling problem severely limit algorithms. To bypass this circumvent, numerous algorithms have been proposed. The Hiking Optimization Algorithm (HOA) have been used in multiple fields. However, HOA suffers from local optimization, slow convergence, and low efficiency of late iteration search when solving cloud task scheduling problems. Thus, this paper proposes an improved HOA called CMOHOA. It collaborates with multi-strategy to improve HOA. Specifically, Chebyshev chaos is introduced to increase population diversity. Then, a hybrid speed update strategy is designed to enhance convergence speed. Meanwhile, an adversarial learning strategy is introduced to enhance the search capability in the late iteration. Different scenarios of scheduling problems are used to test the CMOHOA’s performance. First, CMOHOA was used to solve basic cloud computing task scheduling problems, and the results showed that it reduced the average total cost by 10% or more. Secondly, CMOHOA has been applied to edge fog cloud scheduling problems, and the results show that it reduces the average total scheduling cost by 2% or more. Finally, CMOHOA reduced the average total cost by 7% or more in scheduling problems for information transmission.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
文摘This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world.
文摘The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios.
基金supported by Specific Research project 2022 Faculty of Education,University of Hradec Kralove.
文摘Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental inspiration in designing SOA is human efforts to acquire and improve skills.Various stages of SOA are mathematically modeled in two phases,including:(i)exploration,skill acquisition from experts and(ii)exploitation,skill improvement based on practice and individual effort.The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The optimization results show that SOA,by balancing exploration and exploitation,is able to provide good performance and appropriate solutions for optimization problems.In addition,the performance of SOA in optimization is compared with ten metaheuristic algorithms to evaluate the quality of the results obtained by the proposed approach.Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achievesmuch more competitive results.