This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss r...This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.展开更多
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ...Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.展开更多
Rockburst is a common dynamic geological hazard,frequently occurring in underground engineering(e.g.,TBM tunnelling and deep mining).In order to achieve rockburst monitoring and warning,the microseismic moni-toring te...Rockburst is a common dynamic geological hazard,frequently occurring in underground engineering(e.g.,TBM tunnelling and deep mining).In order to achieve rockburst monitoring and warning,the microseismic moni-toring technique has been widely used in the field.However,the microseismic source location has always been a challenge,playing a vital role in the precise prevention and control of rockburst.To this end,this study proposes a novel microseismic source location model that considers the anisotropy of P-wave velocity.On the one hand,it assigns a unique P-wave velocity to each propagation path,abandoning the assumption of a homogeneous ve-locity field.On the other hand,it treats the P-wave velocity as a co-inversion parameter along with the source location,avoiding the predetermination of P-wave velocity.To solve this model,three various metaheuristic multi-objective optimization algorithms are integrated with it,including the whale optimization algorithm,the butterfly optimization algorithm,and the sparrow search algorithm.To demonstrate the advantages of the model in terms of localization accuracy,localization efficiency,and solution stability,four blasting cases are collected from a water diversion tunnel project in Xinjiang,China.Finally,the effect of the number of involved sensors on the microseismic source location is discussed.展开更多
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are c...The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios.展开更多
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ...This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.展开更多
This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The founda...This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The foundation of MFO is based on the kleptoparasitic behavior of these birds,where they steal prey from other seabirds.In this process,a magnificent frigatebird targets a food-carrying seabird,aggressively pecking at it until the seabird drops its prey.The frigatebird then swiftly dives to capture the abandoned prey before it falls into the water.The theoretical framework of MFO is thoroughly detailed and mathematically represented,mimicking the frigatebird’s kleptoparasitic behavior in two distinct phases:exploration and exploitation.During the exploration phase,the algorithm searches for new potential solutions across a broad area,akin to the frigatebird scouting for vulnerable seabirds.In the exploitation phase,the algorithm fine-tunes the solutions,similar to the frigatebird focusing on a single target to secure its meal.To evaluate MFO’s performance,the algorithm is tested on twenty-three standard benchmark functions,including unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The results from these evaluations highlight MFO’s proficiency in balancing exploration and exploitation throughout the optimization process.Comparative studies with twelve well-known metaheuristic algo-rithms demonstrate that MFO consistently achieves superior optimization results,outperforming its competitors across various metrics.In addition,the implementation of MFO on four engineering design problems shows the effectiveness of the proposed approach in handling real-world applications,thereby validating its practical utility and robustness.展开更多
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ...Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.展开更多
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt...Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.展开更多
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led...Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.展开更多
Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects o...Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.展开更多
The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to o...The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to optimize the transportation system with the help of this approach. We selected forest vehicle routing data as the case study to minimize the total cost and the distance of the forest transportation system. Matlab software helps us find the best solution for this case by applying three algorithms of Metaheuristics: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Extended Great Deluge (EGD). The results show that GA, compared to ACO and EGD, provides the best solution for the cost and the length of our case study. EGD is the second preferred approach, and ACO offers the last solution.展开更多
A reliable and accurate prediction of the tunnel boring machine(TBM)performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six ...A reliable and accurate prediction of the tunnel boring machine(TBM)performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six hybrid models of extreme gradient boosting(XGB)which are optimized by gray wolf optimization(GWO),particle swarm optimization(PSO),social spider optimization(SSO),sine cosine algorithm(SCA),multi verse optimization(MVO)and moth flame optimization(MFO),for estimation of the TBM penetration rate(PR).To do this,a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation,the rock mass rating,Brazilian tensile strength(BTS),rock mass weathering,the uniaxial compressive strength(UCS),revolution per minute and trust force per cutter(TFC),were set as inputs and TBM PR was selected as model output.Together with the mentioned six hybrid models,four single models i.e.,artificial neural network,random forest regression,XGB and support vector regression were also built to estimate TBM PR for comparison purposes.These models were designed conducting several parametric studies on their most important parameters and then,their performance capacities were assessed through the use of root mean square error,coefficient of determination,mean absolute percentage error,and a10-index.Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of(0.1453,and 0.1325),R^(2) of(0.951,and 0.951),mean absolute percentage error(4.0689,and 3.8115),and a10-index of(0.9348,and 0.9496)in training and testing phases,respectively.The developed hybrid PSO-XGB can be introduced as an accurate,powerful and applicable technique in the field of TBM performance prediction.By conducting sensitivity analysis,it was found that UCS,BTS and TFC have the deepest impacts on the TBM PR.展开更多
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet...Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.展开更多
Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental ...Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental inspiration in designing SOA is human efforts to acquire and improve skills.Various stages of SOA are mathematically modeled in two phases,including:(i)exploration,skill acquisition from experts and(ii)exploitation,skill improvement based on practice and individual effort.The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The optimization results show that SOA,by balancing exploration and exploitation,is able to provide good performance and appropriate solutions for optimization problems.In addition,the performance of SOA in optimization is compared with ten metaheuristic algorithms to evaluate the quality of the results obtained by the proposed approach.Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achievesmuch more competitive results.展开更多
Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features s...Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features selection approach plays an important role in constructing effective network IDS.Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy.Therefore,this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack.The proposed model has two objectives;The first one is to reduce the number of selected features for Network IDS.This objective was met through the hybridization of bioinspired metaheuristic algorithms with each other in a hybrid model.The algorithms used in this paper are particle swarm optimization(PSO),multiverse optimizer(MVO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),firefly algorithm(FFA),and bat algorithm(BAT).The second objective is to detect the generic attack using machine learning classifiers.This objective was met through employing the support vector machine(SVM),C4.5(J48)decision tree,and random forest(RF)classifiers.UNSW-NB15 dataset used for assessing the effectiveness of the proposed hybrid model.UNSW-NB15 dataset has nine attacks type.The generic attack is the highest among them.Therefore,the proposed model aims to identify generic attacks.My data showed that J48 is the best classifier compared to SVM and RF for the time needed to build the model.In terms of features reduction for the classification,my data show that the MFO-WOA and FFA-GWO models reduce the features to 15 features with close accuracy,sensitivity and F-measure of all features,whereas MVO-BAT model reduces features to 24 features with the same accuracy,sensitivity and F-measure of all features for all classifiers.展开更多
Metaheuristic algorithms are one of the methods used to solve optimization problems and find global or close to optimal solutions at a reasonable computational cost.As with other types of algorithms,in metaheuristic a...Metaheuristic algorithms are one of the methods used to solve optimization problems and find global or close to optimal solutions at a reasonable computational cost.As with other types of algorithms,in metaheuristic algorithms,one of the methods used to improve performance and achieve results closer to the target result is the hybridization of algorithms.In this study,a hybrid algorithm(HSSJAYA)consisting of salp swarm algorithm(SSA)and jaya algorithm(JAYA)is designed.The speed of achieving the global optimum of SSA,its simplicity,easy hybridization and JAYA’s success in achieving the best solution have given us the idea of creating a powerful hybrid algorithm from these two algorithms.The hybrid algorithm is based on SSA’s leader and follower salp system and JAYA’s best and worst solution part.HSSJAYA works according to the best and worst food source positions.In this way,it is thought that the leader-follower salps will find the best solution to reach the food source.The hybrid algorithm has been tested in 14 unimodal and 21 multimodal benchmark functions.The results were compared with SSA,JAYA,cuckoo search algorithm(CS),firefly algorithm(FFA)and genetic algorithm(GA).As a result,a hybrid algorithm that provided results closer to the desired fitness value in benchmark functions was obtained.In addition,these results were statistically compared using wilcoxon rank sum test with other algorithms.According to the statistical results obtained from the results of the benchmark functions,it was determined that HSSJAYA creates a statistically significant difference in most of the problems compared to other algorithms.展开更多
In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education O...In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education Optimization(LEO)is introduced,which is used to solve optimization problems.LEO is inspired by the foreign language education process in which a language teacher trains the students of language schools in the desired language skills and rules.LEO is mathematically modeled in three phases:(i)students selecting their teacher,(ii)students learning from each other,and(iii)individual practice,considering exploration in local search and exploitation in local search.The performance of LEO in optimization tasks has been challenged against fifty-two benchmark functions of a variety of unimodal,multimodal types and the CEC 2017 test suite.The optimization results show that LEO,with its acceptable ability in exploration,exploitation,and maintaining a balance between them,has efficient performance in optimization applications and solution presentation.LEO efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms.Analyses of the simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly superior andmore competitive in combating the compared algorithms.The implementation results of the proposed approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization applications.展开更多
Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task cl...Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.展开更多
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)under Grant No.124E002(1001-Project).
文摘This study addresses the critical challenge of reconfiguration in unbalanced power distribution networks(UPDNs),focusing on the complex 123-Bus test system.Three scenarios are investigated:(1)simultaneous power loss reduction and voltage profile improvement,(2)minimization of voltage and current unbalance indices under various operational cases,and(3)multi-objective optimization using Pareto front analysis to concurrently optimize voltage unbalance index,active power loss,and current unbalance index.Unlike previous research that oftensimplified system components,this work maintains all equipment,including capacitor banks,transformers,and voltage regulators,to ensure realistic results.The study evaluates twelve metaheuristic algorithms to solve the reconfiguration problem(RecPrb)in UPDNs.A comprehensive statistical analysis is conducted to identify the most efficient algorithm for solving the RecPrb in the 123-Bus UPDN,employing multiple performance metrics and comparative techniques.The Artificial Hummingbird Algorithm emerges as the top-performing algorithm and is subsequently applied to address a multi-objective optimization challenge in the 123-Bus UPDN.This research contributes valuable insights for network operators and researchers in selecting suitable algorithms for specific reconfiguration scenarios,advancing the field of UPDN optimization and management.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification.
基金supported by the National Natural Science Founda-tion of China under Grant Nos.42472351,42177140,52404127,and 42207235the Natural Science Foundation of Hubei Province under Grant No.2024AFD359+1 种基金the Young Elite Scientist Sponsorship Program by CAST under Grant No.YESS20230742the China Postdoctoral Science Foundation Program under Grant No.2024T170684.
文摘Rockburst is a common dynamic geological hazard,frequently occurring in underground engineering(e.g.,TBM tunnelling and deep mining).In order to achieve rockburst monitoring and warning,the microseismic moni-toring technique has been widely used in the field.However,the microseismic source location has always been a challenge,playing a vital role in the precise prevention and control of rockburst.To this end,this study proposes a novel microseismic source location model that considers the anisotropy of P-wave velocity.On the one hand,it assigns a unique P-wave velocity to each propagation path,abandoning the assumption of a homogeneous ve-locity field.On the other hand,it treats the P-wave velocity as a co-inversion parameter along with the source location,avoiding the predetermination of P-wave velocity.To solve this model,three various metaheuristic multi-objective optimization algorithms are integrated with it,including the whale optimization algorithm,the butterfly optimization algorithm,and the sparrow search algorithm.To demonstrate the advantages of the model in terms of localization accuracy,localization efficiency,and solution stability,four blasting cases are collected from a water diversion tunnel project in Xinjiang,China.Finally,the effect of the number of involved sensors on the microseismic source location is discussed.
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
文摘The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.
基金This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19674517).
文摘This paper introduces a groundbreaking metaheuristic algorithm named Magnificent Frigatebird Optimization(MFO),inspired by the unique behaviors observed in magnificent frigatebirds in their natural habitats.The foundation of MFO is based on the kleptoparasitic behavior of these birds,where they steal prey from other seabirds.In this process,a magnificent frigatebird targets a food-carrying seabird,aggressively pecking at it until the seabird drops its prey.The frigatebird then swiftly dives to capture the abandoned prey before it falls into the water.The theoretical framework of MFO is thoroughly detailed and mathematically represented,mimicking the frigatebird’s kleptoparasitic behavior in two distinct phases:exploration and exploitation.During the exploration phase,the algorithm searches for new potential solutions across a broad area,akin to the frigatebird scouting for vulnerable seabirds.In the exploitation phase,the algorithm fine-tunes the solutions,similar to the frigatebird focusing on a single target to secure its meal.To evaluate MFO’s performance,the algorithm is tested on twenty-three standard benchmark functions,including unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The results from these evaluations highlight MFO’s proficiency in balancing exploration and exploitation throughout the optimization process.Comparative studies with twelve well-known metaheuristic algo-rithms demonstrate that MFO consistently achieves superior optimization results,outperforming its competitors across various metrics.In addition,the implementation of MFO on four engineering design problems shows the effectiveness of the proposed approach in handling real-world applications,thereby validating its practical utility and robustness.
文摘Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2024R809).
文摘Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.
文摘Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.
基金supported by the Fundamental Research Funds for the Central Universities(XJ2023005201)the National Natural Science Foundation of China(NSFC:U2267217,42141011,and 42002254).
文摘Groundwater inverse modeling is a vital technique for estimating unmeasurable model parameters and enhancing numerical simulation accuracy.This paper comprehensively reviews the current advances and future prospects of metaheuristic algorithm-based groundwater model parameter inversion.Initially,the simulation-optimization parameter estimation framework is introduced,which involves the integration of simulation models with metaheuristic algorithms.The subsequent sections explore the fundamental principles of four widely employed metaheuristic algorithms-genetic algorithm(GA),particle swarm optimization(PSO),simulated annealing(SA),and differential evolution(DE)-highlighting their recent applications in water resources research and related areas.Then,a solute transport model is designed to illustrate how to apply and evaluate these four optimization algorithms in addressing challenges related to model parameter inversion.Finally,three noteworthy directions are presented to address the common challenges among current studies,including balancing the diverse exploration and centralized exploitation within metaheuristic algorithms,local approxi-mate error of the surrogate model,and the curse of dimensionality in spatial variational heterogeneous pa-rameters.In summary,this review paper provides theoretical insights and practical guidance for further advancements in groundwater inverse modeling studies.
文摘The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to optimize the transportation system with the help of this approach. We selected forest vehicle routing data as the case study to minimize the total cost and the distance of the forest transportation system. Matlab software helps us find the best solution for this case by applying three algorithms of Metaheuristics: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Extended Great Deluge (EGD). The results show that GA, compared to ACO and EGD, provides the best solution for the cost and the length of our case study. EGD is the second preferred approach, and ACO offers the last solution.
基金funded by the National Science Foundation of China(41807259)the Innovation-Driven Project of Central South University(No.2020CX040)the Shenghua Lieying Program of Central South University(Principle Investigator:Dr.Jian Zhou)。
文摘A reliable and accurate prediction of the tunnel boring machine(TBM)performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six hybrid models of extreme gradient boosting(XGB)which are optimized by gray wolf optimization(GWO),particle swarm optimization(PSO),social spider optimization(SSO),sine cosine algorithm(SCA),multi verse optimization(MVO)and moth flame optimization(MFO),for estimation of the TBM penetration rate(PR).To do this,a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation,the rock mass rating,Brazilian tensile strength(BTS),rock mass weathering,the uniaxial compressive strength(UCS),revolution per minute and trust force per cutter(TFC),were set as inputs and TBM PR was selected as model output.Together with the mentioned six hybrid models,four single models i.e.,artificial neural network,random forest regression,XGB and support vector regression were also built to estimate TBM PR for comparison purposes.These models were designed conducting several parametric studies on their most important parameters and then,their performance capacities were assessed through the use of root mean square error,coefficient of determination,mean absolute percentage error,and a10-index.Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of(0.1453,and 0.1325),R^(2) of(0.951,and 0.951),mean absolute percentage error(4.0689,and 3.8115),and a10-index of(0.9348,and 0.9496)in training and testing phases,respectively.The developed hybrid PSO-XGB can be introduced as an accurate,powerful and applicable technique in the field of TBM performance prediction.By conducting sensitivity analysis,it was found that UCS,BTS and TFC have the deepest impacts on the TBM PR.
基金supported by the National Natural Science Foundation Project of China(Nos.72088101 and 42177164)the Distinguished Youth Science Foundation of Hunan Province of China(No.2022JJ10073)The first author was funded by China Scholarship Council(No.202106370038).
文摘Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability.
基金supported by Specific Research project 2022 Faculty of Education,University of Hradec Kralove.
文摘Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental inspiration in designing SOA is human efforts to acquire and improve skills.Various stages of SOA are mathematically modeled in two phases,including:(i)exploration,skill acquisition from experts and(ii)exploitation,skill improvement based on practice and individual effort.The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The optimization results show that SOA,by balancing exploration and exploitation,is able to provide good performance and appropriate solutions for optimization problems.In addition,the performance of SOA in optimization is compared with ten metaheuristic algorithms to evaluate the quality of the results obtained by the proposed approach.Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achievesmuch more competitive results.
基金funded by The World Islamic Sciences and Education University。
文摘Network Intrusion Detection System(IDS)aims to maintain computer network security by detecting several forms of attacks and unauthorized uses of applications which often can not be detected by firewalls.The features selection approach plays an important role in constructing effective network IDS.Various bio-inspired metaheuristic algorithms used to reduce features to classify network traffic as abnormal or normal traffic within a shorter duration and showing more accuracy.Therefore,this paper aims to propose a hybrid model for network IDS based on hybridization bio-inspired metaheuristic algorithms to detect the generic attack.The proposed model has two objectives;The first one is to reduce the number of selected features for Network IDS.This objective was met through the hybridization of bioinspired metaheuristic algorithms with each other in a hybrid model.The algorithms used in this paper are particle swarm optimization(PSO),multiverse optimizer(MVO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),firefly algorithm(FFA),and bat algorithm(BAT).The second objective is to detect the generic attack using machine learning classifiers.This objective was met through employing the support vector machine(SVM),C4.5(J48)decision tree,and random forest(RF)classifiers.UNSW-NB15 dataset used for assessing the effectiveness of the proposed hybrid model.UNSW-NB15 dataset has nine attacks type.The generic attack is the highest among them.Therefore,the proposed model aims to identify generic attacks.My data showed that J48 is the best classifier compared to SVM and RF for the time needed to build the model.In terms of features reduction for the classification,my data show that the MFO-WOA and FFA-GWO models reduce the features to 15 features with close accuracy,sensitivity and F-measure of all features,whereas MVO-BAT model reduces features to 24 features with the same accuracy,sensitivity and F-measure of all features for all classifiers.
文摘Metaheuristic algorithms are one of the methods used to solve optimization problems and find global or close to optimal solutions at a reasonable computational cost.As with other types of algorithms,in metaheuristic algorithms,one of the methods used to improve performance and achieve results closer to the target result is the hybridization of algorithms.In this study,a hybrid algorithm(HSSJAYA)consisting of salp swarm algorithm(SSA)and jaya algorithm(JAYA)is designed.The speed of achieving the global optimum of SSA,its simplicity,easy hybridization and JAYA’s success in achieving the best solution have given us the idea of creating a powerful hybrid algorithm from these two algorithms.The hybrid algorithm is based on SSA’s leader and follower salp system and JAYA’s best and worst solution part.HSSJAYA works according to the best and worst food source positions.In this way,it is thought that the leader-follower salps will find the best solution to reach the food source.The hybrid algorithm has been tested in 14 unimodal and 21 multimodal benchmark functions.The results were compared with SSA,JAYA,cuckoo search algorithm(CS),firefly algorithm(FFA)and genetic algorithm(GA).As a result,a hybrid algorithm that provided results closer to the desired fitness value in benchmark functions was obtained.In addition,these results were statistically compared using wilcoxon rank sum test with other algorithms.According to the statistical results obtained from the results of the benchmark functions,it was determined that HSSJAYA creates a statistically significant difference in most of the problems compared to other algorithms.
基金supported by the Project of Specific Research PˇrF UHK No.2104/2022-2023,University of Hradec Kralove,Czech Republic.
文摘In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education Optimization(LEO)is introduced,which is used to solve optimization problems.LEO is inspired by the foreign language education process in which a language teacher trains the students of language schools in the desired language skills and rules.LEO is mathematically modeled in three phases:(i)students selecting their teacher,(ii)students learning from each other,and(iii)individual practice,considering exploration in local search and exploitation in local search.The performance of LEO in optimization tasks has been challenged against fifty-two benchmark functions of a variety of unimodal,multimodal types and the CEC 2017 test suite.The optimization results show that LEO,with its acceptable ability in exploration,exploitation,and maintaining a balance between them,has efficient performance in optimization applications and solution presentation.LEO efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms.Analyses of the simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly superior andmore competitive in combating the compared algorithms.The implementation results of the proposed approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization applications.
基金Funding for this study is received from Taif University Researchers Supporting Project No.(Project No.TURSP-2020/150)Taif University,Taif,Saudi Arabia。
文摘Digital signal processing of electroencephalography(EEG)data is now widely utilized in various applications,including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification,drug impact identification and sleep state classification.With the increasing number of recorded EEG channels,it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method(Guided WOA),a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs),the method for identifying essential and irrelevant characteristics in a dataset,and the complexity to be eliminated.This enables(SFS-Guided WOA)algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA)algorithm is superior in performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.