An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is propo...An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is proposed as the starting point for the new control philosophy and technology,especially for computational control of metasystems in cyberphysical-social systems.We argue that circular causality,the generalized feedback mechanism for complex and purposive systems,should be adapted as the fundamental principle for control and management of metasystems with metacomplexity in metaverses.Particularly,an interdisciplinary approach is suggested for MetaControl and DeControl as a new form of intelligent control based on five control metaverses:MetaVerses,MultiVerses,InterVerses,TransVerse,and DeepVerses.展开更多
Optical three-dimensional(3D)measurement is a critical tool in micro-nano manufacturing,the automotive industry,and medical technology due to its nondestructive nature,high precision,and sensitivity.However,passive li...Optical three-dimensional(3D)measurement is a critical tool in micro-nano manufacturing,the automotive industry,and medical technology due to its nondestructive nature,high precision,and sensitivity.However,passive light field system still requires a refractive primary lens to collect light of the scene,and structured light can not work well with the highly refractive object.Meta-optics,known for being lightweight,compact,and easily integrable,has enabled advancements in passive metalens-array light fields and active structured light techniques.Here,we propose and experimentally validate a novel 3D measurement metasystem.It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses.A lightweight,physically interpretable algorithm processes these data to yield high-precision depth information efficiently.Experiments on metallic and wafer materials demonstrate a depth accuracy of±20μm and lateral accuracy of±10μm.This single-layer optical metasystem,characterized by simplicity,micro-level accuracy,easy installation and scalability,shows potential for diverse applications,including process control,surface morphology analysis,and production measurement.展开更多
With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
文摘An investigation and outline of MetaControl and DeControl in Metaverses for control intelligence and knowledge automation are presented.Prescriptive control with prescriptive knowledge and parallel philosophy is proposed as the starting point for the new control philosophy and technology,especially for computational control of metasystems in cyberphysical-social systems.We argue that circular causality,the generalized feedback mechanism for complex and purposive systems,should be adapted as the fundamental principle for control and management of metasystems with metacomplexity in metaverses.Particularly,an interdisciplinary approach is suggested for MetaControl and DeControl as a new form of intelligent control based on five control metaverses:MetaVerses,MultiVerses,InterVerses,TransVerse,and DeepVerses.
基金financial supports from the National Key R&D Program of China (2021YFA1401200)Beijing Outstanding Young Scientist Program (BJJWZYJH01201910007022)+1 种基金National Natural Science Foundation of China (No. U21A20140, No. 92050117, No. 62105024) programBeijing Natural Science Foundation (JQ24028)
文摘Optical three-dimensional(3D)measurement is a critical tool in micro-nano manufacturing,the automotive industry,and medical technology due to its nondestructive nature,high precision,and sensitivity.However,passive light field system still requires a refractive primary lens to collect light of the scene,and structured light can not work well with the highly refractive object.Meta-optics,known for being lightweight,compact,and easily integrable,has enabled advancements in passive metalens-array light fields and active structured light techniques.Here,we propose and experimentally validate a novel 3D measurement metasystem.It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses.A lightweight,physically interpretable algorithm processes these data to yield high-precision depth information efficiently.Experiments on metallic and wafer materials demonstrate a depth accuracy of±20μm and lateral accuracy of±10μm.This single-layer optical metasystem,characterized by simplicity,micro-level accuracy,easy installation and scalability,shows potential for diverse applications,including process control,surface morphology analysis,and production measurement.
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.