期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Meta-Path-Based Deep Representation Learning for Personalized Point of Interest Recommendation
1
作者 LI Zhong WU Meimei 《Journal of Donghua University(English Edition)》 CAS 2021年第4期310-322,共13页
With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately rec... With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately recommend POIs to users because the user-POI matrix is extremely sparse.In addition,a user's check-in activities are affected by many influential factors.However,most of existing studies capture only few influential factors.It is hard for them to be extended to incorporate other heterogeneous information in a unified way.To address these problems,we propose a meta-path-based deep representation learning(MPDRL)model for personalized POI recommendation.In this model,we design eight types of meta-paths to fully utilize the rich heterogeneous information in LBSNs for the representations of users and POIs,and deeply mine the correlations between users and POIs.To further improve the recommendation performance,we design an attention-based long short-term memory(LSTM)network to learn the importance of different influential factors on a user's specific check-in activity.To verify the effectiveness of our proposed method,we conduct extensive experiments on a real-world dataset,Foursquare.Experimental results show that the MPDRL model improves at least 16.97%and 23.55%over all comparison methods in terms of the metric Precision@N(Pre@N)and Recall@N(Rec@N)respectively. 展开更多
关键词 meta-path location-based recommendation heterogeneous information network(HIN) deep representation learning
在线阅读 下载PDF
Meta-Path-Based Search and Mining in Heterogeneous Information Networks 被引量:17
2
作者 Yizhou Sun Jiawei Han 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期329-338,共10页
Information networks that can be extracted from many domains are widely studied recently. Different functions for mining these networks are proposed and developed, such as ranking, community detection, and link predic... Information networks that can be extracted from many domains are widely studied recently. Different functions for mining these networks are proposed and developed, such as ranking, community detection, and link prediction. Most existing network studies are on homogeneous networks, where nodes and links are assumed from one single type. In reality, however, heterogeneous information networks can better model the real-world systems, which are typically semi-structured and typed, following a network schema. In order to mine these heterogeneous information networks directly, we propose to explore the meta structure of the information network, i.e., the network schema. The concepts of meta-paths are proposed to systematically capture numerous semantic relationships across multiple types of objects, which are defined as a path over the graph of network schema. Meta-paths can provide guidance for search and mining of the network and help analyze and understand the semantic meaning of the objects and relations in the network. Under this framework, similarity search and other mining tasks such as relationship prediction and clustering can be addressed by systematic exploration of the network meta structure. Moreover, with user's guidance or feedback, we can select the best meta-path or their weighted combination for a specific mining task. 展开更多
关键词 heterogeneous information network meta-path similarity search relationship prediction user-guided clustering
原文传递
Meta-path reasoning of knowledge graph for commonsense question answering 被引量:1
3
作者 Miao ZHANG Tingting HE Ming DONG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第1期49-59,共11页
Commonsense question answering(CQA)requires understanding and reasoning over QA context and related commonsense knowledge,such as a structured Knowledge Graph(KG).Existing studies combine language models and graph neu... Commonsense question answering(CQA)requires understanding and reasoning over QA context and related commonsense knowledge,such as a structured Knowledge Graph(KG).Existing studies combine language models and graph neural networks to model inference.However,traditional knowledge graph are mostly concept-based,ignoring direct path evidence necessary for accurate reasoning.In this paper,we propose MRGNN(Meta-path Reasoning Graph Neural Network),a novel model that comprehensively captures sequential semantic information from concepts and paths.In MRGNN,meta-paths are introduced as direct inference evidence and an original graph neural network is adopted to aggregate features from both concepts and paths simultaneously.We conduct sufficient experiments on the CommonsenceQA and OpenBookQA datasets,showing the effectiveness of MRGNN.Also,we conduct further ablation experiments and explain the reasoning behavior through the case study. 展开更多
关键词 question answering knowledge graph graph neural network meta-path reasoning
原文传递
NERank+: a graph-based approach for entity ranking in document collections 被引量:1
4
作者 Chengyu WANG Guomin ZHOU +1 位作者 Xiaofeng HE Aoying ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第3期504-517,共14页
Most entity ranking research aims to retrieve a ranked list of entities from a Web corpus given a user query. The rank order of entities is determined by the relevance between the query and contexts of entities. Howev... Most entity ranking research aims to retrieve a ranked list of entities from a Web corpus given a user query. The rank order of entities is determined by the relevance between the query and contexts of entities. However, entities can be ranked directly based on their relative importance in a document collection, independent of any queries. In this paper, we introduce an entity ranking algorithm named NERank+. Given a document collection, NERank+ first constructs a graph model called Topical Tripartite Graph, consisting of document, topic and entity nodes. We design separate ranking functions to compute the prior ranks of entities and topics, respectively. A meta-path constrained random walk algorithm is proposed to propagate prior entity and topic ranks based on the graph model. We evaluate NERank+ over real-life datasets and compare it with baselines. Experimental results illustrate the effectiveness of our approach. 展开更多
关键词 entity ranking Topical Tripartite Graph priorrank estimation meta-path constrained random walk
原文传递
DDI-Transform:A neural network for predicting drug-drug interaction events 被引量:1
5
作者 Jiaming Su Ying Qian 《Quantitative Biology》 CAS CSCD 2024年第2期155-163,共9页
Drug-drug interaction(DDI)event prediction is a challenging problem,and accurate prediction of DDI events is critical to patient health and new drug development.Recently,many machine learning-based techniques have bee... Drug-drug interaction(DDI)event prediction is a challenging problem,and accurate prediction of DDI events is critical to patient health and new drug development.Recently,many machine learning-based techniques have been proposed for predicting DDI events.However,most of the existing methods do not effectively integrate the multidimensional features of drugs and provide poor mitigation of noise to get effective feature information.To address these limitations,we propose a DDI-Transform neural network framework for DDI event prediction.In DDI-Transform,we design a drug structure information feature extraction module and a drug bind-protein feature extraction module to obtain multidimensional feature information.A stack of DDI-Transform layers in the DDI-Transform network module are then used for adaptive learning,thus adaptively selecting the effective feature information for prediction.The results show that DDI-Transform can accurately predict DDI events and outperform the state-of-the-art models.Results on different scale datasets confirm the robustness of the method. 展开更多
关键词 adaptive learning graph convolutional networks interaction prediction meta-path
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部