期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
理想的Web查询工具——Meta-Searcher 被引量:4
1
作者 赵丹群 《图书情报工作》 CSSCI 北大核心 2000年第9期40-42,共3页
介绍和分析元搜索引擎的类型、工作原理、系统结构等,并认为这种搜索引擎技术代表了网络信息检索的发展方向,将成为网络信息的理想查询工具。
关键词 WEB网 网络信息 查询 检索工具 meta-searcher
原文传递
Windows环境下文献检索的并发meta-search系统的设计与实现 被引量:1
2
作者 索金琳 王志坚 《微计算机应用》 2002年第2期109-112,共4页
本文简要描述了特定领域meta-search的产生背景及工作原理,并在此基础上介绍了一个实验性meta-search系统——Windows环境下文献检索的并发meta-search系统——的体系结构、实现要点及对该系统的评价。
关键词 搜索引擎 文献检索 meta-search系统 WINDOWS 计算机网络
在线阅读 下载PDF
WWW上Meta-Search的研究与实现 被引量:6
3
作者 陈智健 《计算机科学》 CSCD 北大核心 1999年第4期38-42,共5页
1 引言 World Wide Web是目前全球最大的信息系统,在WWW上查询Web文档主要依赖于Internet上的索引信息系统,如Yahoo、Infoseek、AltaVista、WebCrawler、Excite、Lycos等等。由于WWW太大又没有良好的结构且Web服务器的自治性,所以Web文... 1 引言 World Wide Web是目前全球最大的信息系统,在WWW上查询Web文档主要依赖于Internet上的索引信息系统,如Yahoo、Infoseek、AltaVista、WebCrawler、Excite、Lycos等等。由于WWW太大又没有良好的结构且Web服务器的自治性,所以Web文档的查询难以做到全面而精确。衡量Web文档查询的质量主要有两个方面:①是否能把所有相关的文档资源找出来,不要有所遗漏。 展开更多
关键词 WWW 元搜索 INTERNET网 信息资源
在线阅读 下载PDF
领域相关的Web网站抓取方法 被引量:5
4
作者 李刚 周立柱 +1 位作者 郭奇 林玲 《计算机科学》 CSCD 北大核心 2007年第2期137-140,148,共5页
本文提出了一种抓取领域相关的Web站点的方法,可以在较小的代价下准确地收集用户所关心领域内的网站。这种方法主要改进了传统的聚焦爬虫(Focused Crawler)技术,首先利用Meta-Search技术来改进传统Crawler的通过链接分析来抓取网页的方... 本文提出了一种抓取领域相关的Web站点的方法,可以在较小的代价下准确地收集用户所关心领域内的网站。这种方法主要改进了传统的聚焦爬虫(Focused Crawler)技术,首先利用Meta-Search技术来改进传统Crawler的通过链接分析来抓取网页的方法,而后利用启发式搜索大大降低了搜索代价,通过引入一种评价领域相关性的打分方法,达到了较好的准确率。本文详细地描述了上述算法并通过详细的实验验证了算法的效率和效果。 展开更多
关键词 meta-search 聚焦爬虫(Focused Crawler) 启发式搜索
在线阅读 下载PDF
RESEARCH ON OPTIMIZING THE MERGING RESULTS OF MULTIPLE INDEPENDENT RETRIEVAL SYSTEMS BY A DISCRETE PARTICLE SWARM OPTIMIZATION 被引量:1
5
作者 XieXingsheng ZhangGuoliang XiongYan 《Journal of Electronics(China)》 2012年第1期111-119,共9页
The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existi... The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%. 展开更多
关键词 Multiple resource retrievals Result merging meta-search engine Discrete ParticleSwarm Optimization (DPSO)
在线阅读 下载PDF
The Result Integration Algorithm Based on Matching Strategy
6
作者 XU Jia-shu YE Zhi-qiang QIN Zheng 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期113-116,共4页
The following paper provides a new algorithm: a result integration algorithm based on matching strategy. The algorithm extracts the title and the abstract of Web pages, calculates the relevance between the query stri... The following paper provides a new algorithm: a result integration algorithm based on matching strategy. The algorithm extracts the title and the abstract of Web pages, calculates the relevance between the query string and the Web pages, decides the Web pages accepted, rejected and sorts them out in user interfaces. The experiment results in dieate obviously that the new algorithms improve the precision of meta-search engine. This technique is very useful to metasearch engine. 展开更多
关键词 meta-search engine RELEVANCE Web page
在线阅读 下载PDF
A ranking SVM based fusion model for cross-media meta-search engine 被引量:2
7
作者 Ya-li CAO Tie-jun HUANG Yong-hong TIAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第11期903-910,共8页
Recently,we designed a new experimental system MSearch,which is a cross-media meta-search system built on the database of the WikipediaMM task of ImageCLEF 2008.For a meta-search engine,the kernel problem is how to me... Recently,we designed a new experimental system MSearch,which is a cross-media meta-search system built on the database of the WikipediaMM task of ImageCLEF 2008.For a meta-search engine,the kernel problem is how to merge the results from multiple member search engines and provide a more effective rank list.This paper deals with a novel fusion model employing supervised learning.Our fusion model employs ranking SVM in training the fusion weight for each member search engine. We assume the fusion weight of each member search engine as a feature of a result document returned by the meta-search engine. For a returned result document,we first build a feature vector to represent the document,and set the value of each feature as the document's score returned by the corresponding member search engine.Then we construct a training set from the documents returned from the meta-search engine to learn the fusion parameter.Finally,we use the linear fusion model based on the overlap set to merge the results set.Experimental results show that our approach significantly improves the performance of the cross-media meta-search(MSearch) and outperforms many of the existing fusion methods. 展开更多
关键词 Information fusion meta-search CROSS-MEDIA RANKING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部