Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to...Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast accord- ing to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting sys- tem in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hy- drology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the de- terministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.展开更多
准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研...准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研究以农业干旱、高温和大气环流因子为预测因子,在不同预见期(1、12、24、36、48个月)下采用Meta-Gaussian(MG)模型预测黄河流域典型年份的农业干旱事件,通过纳什效率系数(Nash-Sutcliffe efficiency coefficient,NSE)和均方根误差(root mean square error,RMSE)探究在MG模型中引入大气环流因子对农业干旱预测性能的影响。结果表明:大气环流因子中12个月时间尺度的标准化西太平洋副高强度指数(standardized western Pacific subtropical high intensity index,SWPSHI)与农业干旱相关性最为显著;以典型年2014年8月份为例发现MG模型预测值受预见期长度、预测因子影响较大;相比于单因子预测,引入大气环流因子的MG模型的评价指标NSE和RMSE改善网格占比最高达46%,空间上在内蒙古、宁夏、甘肃、陕西等省区1 a以上预见期明显改善,而考虑大气环流因子和高温的MG模型进一步提升了模型的预测性能,扩大了网格占比。因此在上述省区干旱预测时需考虑大气环流因子的影响。展开更多
本文研究了干旱发生的联合概率、条件概率和重现期等干旱特征。以陕西省西安站月降水为例,应用Meta-Gaussian Copula和Student t Copula构造了干旱历时、干旱烈度和烈度峰值的联合概率分布,并进行了多变量分布拟合优质评价及拟合检验,...本文研究了干旱发生的联合概率、条件概率和重现期等干旱特征。以陕西省西安站月降水为例,应用Meta-Gaussian Copula和Student t Copula构造了干旱历时、干旱烈度和烈度峰值的联合概率分布,并进行了多变量分布拟合优质评价及拟合检验,在此基础上计算了联合分布的重现期以及2变量和3变量情形下的条件概率与条件重现期。研究表明,Meta-Gaussian Copula可以描述干旱历时、干旱烈度和烈度峰值三者的联合分布。由于多元联合分布可以考虑到多个变量之间的不同组合,能够求得不同干旱历时、干旱烈度或烈度峰值下的条件概率和条件重现期,因而能够更加全面客观地反映干旱的特征。展开更多
针对贝叶斯概率预报模型(Bayesian processor of forecasts,BPF)中输入数据的正态转换问题,探讨了Meta-Gaussian模型(MG)和Box-Cox变换(BC)对BPF模型性能的影响。首先利用MG和BC分别对BPF模型输入数据进行正态转换,然后分别建立BPF-MG和...针对贝叶斯概率预报模型(Bayesian processor of forecasts,BPF)中输入数据的正态转换问题,探讨了Meta-Gaussian模型(MG)和Box-Cox变换(BC)对BPF模型性能的影响。首先利用MG和BC分别对BPF模型输入数据进行正态转换,然后分别建立BPF-MG和BPF-BC模型进行概率预报,最后对BPF-MG和BPF-BC在不同预见期和不同数据样本条件下的预报能力进行了分析。结果表明,当数据样本较少时,BPF-MG具有较高的稳定性,但BC转换比MG更简单,BC变换系数非常敏感;当数据样本增多后,BC变换的转换系数稳定,BPFBC预报质量提高。展开更多
基金Supported by the National Natural Science Foundation of China (41075035)National Science and Technology Support Program of China (2009BAC51B00)+1 种基金National (Key) Basic Research and Development (973) Program of China (2012CB417204)China Meteorological Administration Special Public Welfare Research Fund (GYHY200906007)
文摘Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast accord- ing to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting sys- tem in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hy- drology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the de- terministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
文摘准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研究以农业干旱、高温和大气环流因子为预测因子,在不同预见期(1、12、24、36、48个月)下采用Meta-Gaussian(MG)模型预测黄河流域典型年份的农业干旱事件,通过纳什效率系数(Nash-Sutcliffe efficiency coefficient,NSE)和均方根误差(root mean square error,RMSE)探究在MG模型中引入大气环流因子对农业干旱预测性能的影响。结果表明:大气环流因子中12个月时间尺度的标准化西太平洋副高强度指数(standardized western Pacific subtropical high intensity index,SWPSHI)与农业干旱相关性最为显著;以典型年2014年8月份为例发现MG模型预测值受预见期长度、预测因子影响较大;相比于单因子预测,引入大气环流因子的MG模型的评价指标NSE和RMSE改善网格占比最高达46%,空间上在内蒙古、宁夏、甘肃、陕西等省区1 a以上预见期明显改善,而考虑大气环流因子和高温的MG模型进一步提升了模型的预测性能,扩大了网格占比。因此在上述省区干旱预测时需考虑大气环流因子的影响。
文摘本文研究了干旱发生的联合概率、条件概率和重现期等干旱特征。以陕西省西安站月降水为例,应用Meta-Gaussian Copula和Student t Copula构造了干旱历时、干旱烈度和烈度峰值的联合概率分布,并进行了多变量分布拟合优质评价及拟合检验,在此基础上计算了联合分布的重现期以及2变量和3变量情形下的条件概率与条件重现期。研究表明,Meta-Gaussian Copula可以描述干旱历时、干旱烈度和烈度峰值三者的联合分布。由于多元联合分布可以考虑到多个变量之间的不同组合,能够求得不同干旱历时、干旱烈度或烈度峰值下的条件概率和条件重现期,因而能够更加全面客观地反映干旱的特征。
文摘针对贝叶斯概率预报模型(Bayesian processor of forecasts,BPF)中输入数据的正态转换问题,探讨了Meta-Gaussian模型(MG)和Box-Cox变换(BC)对BPF模型性能的影响。首先利用MG和BC分别对BPF模型输入数据进行正态转换,然后分别建立BPF-MG和BPF-BC模型进行概率预报,最后对BPF-MG和BPF-BC在不同预见期和不同数据样本条件下的预报能力进行了分析。结果表明,当数据样本较少时,BPF-MG具有较高的稳定性,但BC转换比MG更简单,BC变换系数非常敏感;当数据样本增多后,BC变换的转换系数稳定,BPFBC预报质量提高。