As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari...As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.展开更多
Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope...Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.展开更多
A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to ...A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to investigate the tunnel-soil-pile interaction at various stages of tunnel excavation.This study combined field measurements and three-dimensional(3D)numerical analysis to understand the transient effects of TBM tunnelling on a loaded pile.An experimental pile was instrumented with vibrating wire strain gauges,an inclinometer,and distributed fibre optic sensors using Brillouin optical time domain analysis.The pile was pre-loaded and continuously monitored in real-time throughout the tunnel construction process.The 3D finite element modelling was used to simulate the pile’s transient responses based on actual tunnel boring machine(TBM)driving data.The study revealed that the zone of influence due to tunnelling effects extended from y¼2D to y¼4D,with the peak effect observed at y¼1D to 1.5D,where D represents the tunnel diameter.The analysis of axial load patterns highlighted transient responses,including tensile loads below the tunnel invert,which propagated upward and subsided due to negative skin friction.The maximum downdrag load observed reached 56%e71%of the pile’s working load.Additionally,pile movement patterns indicated outward deflections as the TBM approached and a return toward the tunnel post-passage,aligning with the predicted behaviour in a negative face loss scenario.This validated numerical framework provides a solid foundation for further parametric studies and enhances the understanding of tunnel-soil-pile interactions.展开更多
The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three...The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in...In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.展开更多
Accurate on-site determination of arsenic (As) concentration as well as its speciation presents a great environmental challenge especially to developing countries. To meet the need of routine field monitoring, we de...Accurate on-site determination of arsenic (As) concentration as well as its speciation presents a great environmental challenge especially to developing countries. To meet the need of routine field monitoring, we developed a rapid colorimetric method with a wide dynamic detection range and high precision. The novel application of KMnO4 and CHaN2S as effective As(III) oxidant and As(V) reductant, respectively, in the formation of molybdenum blue complexes enabled the differentiation of As(III) and As(V). The detection limit of the method was 8 ~tg/L with a linear range (R2 = 0.998) of four orders of magnitude in total As concentrations. The As speciation in groundwater samples determined with the colorimetric method in the field were consistent with the results using the high performance liquid chromatography atomic fluorescence spectrometry, as evidenced by a linear correlation in paired analysis with a slope of 0.9990- 0.9997 (p 〈 0.0001, n = 28). The recovery of 96%-116% for total As, 85%-122% for As(III), and 88%-127% for As(V) were achieved for groundwater samples with a total As concentration range 100-800 μg/L. The colorimetric result showed that 3.61 g/L As(III) existed as the only As species in a real industrial wastewater, which was in good agreement with the HPLC-AFS result of 3.56 g/L As(Ⅲ). No interference with the color development was observed in the presence of sulfate, phosphate, silicate, humic acid, and heavy metals from complex water matrix. This accurate, sensitive, and easy-to-use method is especially suitable for field As determination.展开更多
In a continuous casting process, it is essential to prevent the surface defects which are caused by the mold powder entrapments. It is well known that the decrease in the molten steel flow velocity just under the free...In a continuous casting process, it is essential to prevent the surface defects which are caused by the mold powder entrapments. It is well known that the decrease in the molten steel flow velocity just under the free surface is one of the most effective methods for the prevention of mold powder entrapments. For this purpose, the electro-magnetic level stabilizer (EMLS) has been developed, which is applied to a low frequency alternating magnetic field moving from the narrow face of the mold to the mold center below the nozzle exits. In this study, the effect of the EMLS on the molten steel flow is investigated. Numerical simulation of the electromagnetic field and the molten steel flow in a mold were carried out. Simulation results indicate that, due to the electromagnetic force, the molten steel is forced to flow toward the magnetic field traveling direction in the region where the magnetic field is imposed. The molten steel flow is decelerated in proportion to the imposed electromagnetic force. Consequently, the molten steel flows toward the mold center near the free surface with a smaller imposed electromagnetic force, and it flows toward the nozzle at the nozzle side and toward the narrow face at the narrow face side with a larger imposed electromagnetic force. However, the magnitude of the electromagnetic force is decided by the current intensity and frequency, a suitable imposed electric current can be chosen to minimize the flow velocity and also the amount of mold powder entrapments.展开更多
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel...A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.展开更多
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation...The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.展开更多
Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity fiel...Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.展开更多
[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct stat...[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct statistical analysis on the field efficacy of pesticides was introduced, and an example was used to illustrate the usage and skill of the program. [Result] The procedure could quickly and accurately con- duct statistical analysis on the field efficacy of pesticide by only inputting initial data of the test, and it could compare the significance of differences between various fac- tors. Its calculated results were consistent with the results of the specialized statisti- cal software DPS. [Conclusion] It is a quick and simple method with high accuracy and reliability, which can greatly improve the efficiency of pesticide formulation opti- mization.展开更多
Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a disto...Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.展开更多
In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field...In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.展开更多
A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedepe...A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.展开更多
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ...Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.展开更多
The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are ...The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.展开更多
To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is u...To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the Ministry of Science and Technology(MOST)Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach.
文摘Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively.
文摘A full-scale research study was conducted during the bored tunnelling of the Klang Valley Mass Rapid Transit-Putrajaya Line beneath an existing building structure in Kuala Lumpur,Malaysia.The primary objective was to investigate the tunnel-soil-pile interaction at various stages of tunnel excavation.This study combined field measurements and three-dimensional(3D)numerical analysis to understand the transient effects of TBM tunnelling on a loaded pile.An experimental pile was instrumented with vibrating wire strain gauges,an inclinometer,and distributed fibre optic sensors using Brillouin optical time domain analysis.The pile was pre-loaded and continuously monitored in real-time throughout the tunnel construction process.The 3D finite element modelling was used to simulate the pile’s transient responses based on actual tunnel boring machine(TBM)driving data.The study revealed that the zone of influence due to tunnelling effects extended from y¼2D to y¼4D,with the peak effect observed at y¼1D to 1.5D,where D represents the tunnel diameter.The analysis of axial load patterns highlighted transient responses,including tensile loads below the tunnel invert,which propagated upward and subsided due to negative skin friction.The maximum downdrag load observed reached 56%e71%of the pile’s working load.Additionally,pile movement patterns indicated outward deflections as the TBM approached and a return toward the tunnel post-passage,aligning with the predicted behaviour in a negative face loss scenario.This validated numerical framework provides a solid foundation for further parametric studies and enhances the understanding of tunnel-soil-pile interactions.
基金Zhejiang Provincial Natural Science Foundation of China for Young Scholars(Project No.:LQ20A020009)National College Students’Innovation and Entrepreneurship Training Program(Project No.:202311842014X)。
文摘The longitudinal cracks distributed along the dam axis in the corridor of a dam may have potential safety hazards.According to the detection results of crack depth and width and the analysis of monitoring data,a three-dimensional finite element model is established for numerical simulation calculation and the influence of cracks on the safety of dam structure is analyzed from different aspects such as deformation,stress value,and distribution range.The calculation results show that the maximum principal tensile stress value and the location of the dam body are basically independent of the change of crack depth(within 1.0 m).Regarding local stress around the corridor,the high upstream water level causes cracks to deepen,resulting in an increase in the maximum tensile stress near the crack tip and an expansion of the tensile stress region.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
基金supported in part by the National Natural Science Foundation of China(Grant No.40974069)PetroChina Innovation Foundation(Grant No.2009D-5006-03-01)+1 种基金National Key Basic Research Development Program(GrantNo.2007CB209601)National Major Science and Technology Program(Grant Nos.2008ZX05010-002 and 2008ZX05024-001)
文摘In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.
基金the financial support of the National Natural Science Foundation of China (No. 20977098,20921063)the National Basic Research Program (973) of China (No. 2010CB933502)
文摘Accurate on-site determination of arsenic (As) concentration as well as its speciation presents a great environmental challenge especially to developing countries. To meet the need of routine field monitoring, we developed a rapid colorimetric method with a wide dynamic detection range and high precision. The novel application of KMnO4 and CHaN2S as effective As(III) oxidant and As(V) reductant, respectively, in the formation of molybdenum blue complexes enabled the differentiation of As(III) and As(V). The detection limit of the method was 8 ~tg/L with a linear range (R2 = 0.998) of four orders of magnitude in total As concentrations. The As speciation in groundwater samples determined with the colorimetric method in the field were consistent with the results using the high performance liquid chromatography atomic fluorescence spectrometry, as evidenced by a linear correlation in paired analysis with a slope of 0.9990- 0.9997 (p 〈 0.0001, n = 28). The recovery of 96%-116% for total As, 85%-122% for As(III), and 88%-127% for As(V) were achieved for groundwater samples with a total As concentration range 100-800 μg/L. The colorimetric result showed that 3.61 g/L As(III) existed as the only As species in a real industrial wastewater, which was in good agreement with the HPLC-AFS result of 3.56 g/L As(Ⅲ). No interference with the color development was observed in the presence of sulfate, phosphate, silicate, humic acid, and heavy metals from complex water matrix. This accurate, sensitive, and easy-to-use method is especially suitable for field As determination.
文摘In a continuous casting process, it is essential to prevent the surface defects which are caused by the mold powder entrapments. It is well known that the decrease in the molten steel flow velocity just under the free surface is one of the most effective methods for the prevention of mold powder entrapments. For this purpose, the electro-magnetic level stabilizer (EMLS) has been developed, which is applied to a low frequency alternating magnetic field moving from the narrow face of the mold to the mold center below the nozzle exits. In this study, the effect of the EMLS on the molten steel flow is investigated. Numerical simulation of the electromagnetic field and the molten steel flow in a mold were carried out. Simulation results indicate that, due to the electromagnetic force, the molten steel is forced to flow toward the magnetic field traveling direction in the region where the magnetic field is imposed. The molten steel flow is decelerated in proportion to the imposed electromagnetic force. Consequently, the molten steel flows toward the mold center near the free surface with a smaller imposed electromagnetic force, and it flows toward the nozzle at the nozzle side and toward the narrow face at the narrow face side with a larger imposed electromagnetic force. However, the magnitude of the electromagnetic force is decided by the current intensity and frequency, a suitable imposed electric current can be chosen to minimize the flow velocity and also the amount of mold powder entrapments.
文摘A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.
基金CAS Action-plan for West Development, KZCX2-XB2-06-03 National Natural Science Foundation of China, No.30500064
文摘The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.
基金supported by the Fundamental Research Funds for the Dalian University of Technology(Grant No.DUT10LK43)the National Key Basic Research Program of China(Grant No.2013CB036101)
文摘Submerged horizontal plate can be considered as a new concept breakwater. In order to reveal the wave elimination mechanism of this type breakwater, boundary element method is utilized to investigate the velocity field around plate carefully. The flow field analysis shows that the interaction between incident wave and reverse flow caused by submerged plate will lead to the formation of wave elimination area around both sides of the plate. The velocity magnitude of flow field has been reduced and this is the main reason of wave elimination.
基金Supported by the Scientific and Technological Foundation for Special Basic Research of Chinese Academy of Tropical Agricultural Science(2012hzs1J002)the National Natural Science Foundation of China(31101465)the Research Fund for Welfare Industry(Agriculture)(201103026)~~
文摘[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct statistical analysis on the field efficacy of pesticides was introduced, and an example was used to illustrate the usage and skill of the program. [Result] The procedure could quickly and accurately con- duct statistical analysis on the field efficacy of pesticide by only inputting initial data of the test, and it could compare the significance of differences between various fac- tors. Its calculated results were consistent with the results of the specialized statisti- cal software DPS. [Conclusion] It is a quick and simple method with high accuracy and reliability, which can greatly improve the efficiency of pesticide formulation opti- mization.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175)
文摘Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.
文摘In this paper, using the quasi-3D coupled current method, the influences of structure of cold crucible, the power frequency, the electricity property of melt, the coil position and current on the electromagnetic field (EMF) and the levitation characteristics in the melting processes are analyzed. It is shown that in the processes of levitation melting with cold crucible, the power frequency and cold crucible structure are the decisive factors for the ability of magnetic flux penetrating into cold crucible. The magnetic flux density in cold crucible is reduced as the increasing of power frequency, and this tendency becomes stronger when the power frequency is higher than 100kHz. The segmented structure of cold crucible can reduce the induction eddy in itself effectively, and the higher the power frequency is, the better the result is. So, a cold crucible can be segmented into 16-20 sectors for high frequency electromagnetic field and/or 8-12 sectors for lower frequency one. It is also shown that the levitation force of melting charge is related to coil current as a parabolic function.
基金financial supports from the National Natural Science Foundation of China (No.51804349)the China Postdoctoral Science Foundation (No.2018M632986)+1 种基金the Natural Science Foundation of Hunan Province,China (No.2019JJ50766)the National Key Laboratory of Science and Technology on High-strength Structural Materials,China (No.JCKY201851)。
文摘A 3D finite element model was established to investigate the temperature and stress fields during the selective laser melting process of Al−Mg−Sc−Zr alloy.By considering the powder−solid transformation,temperaturedependent thermal properties,latent heat of phase transformations and molten pool convection,the effects of laser power,point distance and hatch spacing on the temperature distribution,molten pool dimensions and residual stress distribution were investigated.Then,the effects of laser power,point distance and hatch spacing on the microstructure,density and hardness of the alloy were studied by the experimental method.The results show that the molten pool size gradually increases as the laser power increases and the point distance and hatch spacing decrease.The residual stress mainly concentrates in the middle of the first scanning track and the beginning and end of each scanning track.Experimental results demonstrate the accuracy of the model.The density of the samples tends to increase and then decrease with increasing laser power and decreasing point distance and hatch spacing.The optimum process parameters are laser power of 325−375 W,point distance of 80−100μm and hatch spacing of 80μm.
基金This project is supported by National Natural Science Foundation of China (No. 50175042).
文摘Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.
基金Department of Science and Technology of Jiangsu Province,China(No. BE2003-46).
文摘The physical model based on heat transfer theory and virtual boundary method for analyzing unsteady thermal field of rotor plate for eddy current retarder used in automobile is established and boundary conditions are also defined. The finite element governing equation is derived by Galerkin method. The time differential item is discrete based on Galerkin format that is stable at any condition. And a new style of varying time step method is used in iteration process. The thermal field on the rotor plate at the radial and axle directions is analyzed and varying temperature at appointed points on two side-surfaces is measured. The testing and analytical data are uniform approximately. Finite element method can be used for estimating thermal field of the rotor plate at initial design stage of eddy current retarder.
基金This work was supported by the National Natural Science Foundation of China(51774011)Funding Project of Anhui University of Science and Technology(QN2019115)Introduced Research Funding of Anhui University of Science and Technology(13190022).
文摘To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation.