A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method ...A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.展开更多
In the Lagrangian meshless(particle)methods,such as the smoothed particle hydrodynamics(SPH),moving particle semi-implicit(MPS)method and meshless local Petrov-Galerkin method based on Rankine source solution(MLPG_R),...In the Lagrangian meshless(particle)methods,such as the smoothed particle hydrodynamics(SPH),moving particle semi-implicit(MPS)method and meshless local Petrov-Galerkin method based on Rankine source solution(MLPG_R),the Laplacian discretisation is often required in order to solve the governing equations and/or estimate physical quantities(such as the viscous stresses).In some meshless applications,the Laplacians are also needed as stabilisation operators to enhance the pressure calculation.The particles in the Lagrangian methods move following the material velocity,yielding a disordered(random)particle distribution even though they may be distributed uniformly in the initial state.Different schemes have been developed for a direct estimation of second derivatives using finite difference,kernel integrations and weighted/moving least square method.Some of the schemes suffer from a poor convergent rate.Some have a better convergent rate but require inversions of high order matrices,yielding high computational costs.This paper presents a quadric semi-analytical finite-difference interpolation(QSFDI)scheme,which can achieve the same degree of the convergent rate as the best schemes available to date but requires the inversion of significant lower-order matrices,i.e.3×3 for 3D cases,compared with 6×6 or 10×10 in the schemes with the best convergent rate.Systematic patch tests have been carried out for either estimating the Laplacian of given functions or solving Poisson’s equations.The convergence,accuracy and robustness of the present schemes are compared with the existing schemes.It will show that the present scheme requires considerably less computational time to achieve the same accuracy as the best schemes available in literatures,particularly for estimating the Laplacian of given functions.展开更多
In this paper,a simple direct space-time semi-analytical meshless scheme is proposed for the numerical approximation of the coupled Burgers'equations.During the whole solution procedure,two different schemes are c...In this paper,a simple direct space-time semi-analytical meshless scheme is proposed for the numerical approximation of the coupled Burgers'equations.During the whole solution procedure,two different schemes are considered in terms of radial and non-radial basis functions.The time-dependent variable in the first radial scheme is directly considered as the normal space variables to formulate an"isotropic"space-time radial basis function.The second non-radial scheme considered relationship between time-dependent and spacedependent variables.Under such circumstance,we can get a one-step space-time meshless scheme.The numerical findings demonstrate that the proposed meshless schemes are precise,user-friendly,and effective in solving the coupled Burgers'equations.展开更多
A simple direct space-time meshless scheme,based on the radial or non-radial basis function,is proposed for the onedimensional Klein-Gordon equations.Since these equations are time-dependent,it is worthwhile to presen...A simple direct space-time meshless scheme,based on the radial or non-radial basis function,is proposed for the onedimensional Klein-Gordon equations.Since these equations are time-dependent,it is worthwhile to present two schemes for the basis functions from radial and non-radial aspects.The first scheme is fulfilled by considering time variable as normal space variable,to construct an"isotropic"space-time radial basis function.The other scheme considered a realistic relationship between space variable and time variable which is not radial.The timedependent variable is treated regularly during the whole solution process and the Klein-Gordon equations can be solved in a direct way.Numerical results show that the proposed meshless schemes are simple,accurate,stable,easy-to-program and efficient for the Klein-Gordon equations.展开更多
Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is b...Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.展开更多
Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as t...Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as the finite element method (FEM) and the boundary element method (BEM), is naturally of great interest in many practical applications. However, the shape functions used in some MFree methods do not have the Kronecker delta function property. In order to satisfy the combined conditions of displacement compatibility, two numerical techniques, using the hybrid displacement shape function and the modified variational form, are developed and discussed in this paper. In the first technique, the original MFree shape functions are modified to the hybrid forms that possess the Kronecker delta function property. In the second technique, the displacement compatibility is satisfied via a modified variational form based on the Lagrange multiplier method. Formulations of several coupled methods are presented. Numerical exam- ples are presented to demonstrate the effectiveness of the present coupling methods.展开更多
This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of ...This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.展开更多
Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions.The reproducing kernel gradient smoothing integra...Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions.The reproducing kernel gradient smoothing integration(RKGSI)is one of the optimal numerical integration techniques in Galerkin meshless methods with minimum integration points.In this paper,properties,quadrature rules and the effect of the RKGSI on meshless methods are analyzed.The existence,uniqueness and error estimates of the solution of Galerkin meshless methods under numerical integration with the RKGSI are established.A procedure on how to choose quadrature rules to recover the optimal convergence rate is presented.展开更多
As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-...As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing, and poses new challenges which have not been fully resolved by the state-of-art graphical techniques. In this paper, we address the challenges by proposing a meshless computational framework for dynamic modeling and simulation of solids and thin-shells represented as point sam- ples. Our meshless framework can directly compute the elastic deformation and fracture propagation for any scanned point geometry, without the need of converting them to polygonal meshes or higher order spline representations. We address the necessary computational techniques, such as Moving Least Squares, Hierarchical Discretization, and Modal Warping, to effectively and efficiently compute the physical simulation in real-time. This meahless computational framework aims to bridge the gap between the point-sampled geometry with physics-based modeling and simulation governed by partial differential equations.展开更多
After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir develo...After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.展开更多
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact...The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.展开更多
A meshless simulation system is presented for elastic deformation driven by skeleton in this paper. In this system, we propose a new method for calculating node rotation while applying a similar technique with stiffne...A meshless simulation system is presented for elastic deformation driven by skeleton in this paper. In this system, we propose a new method for calculating node rotation while applying a similar technique with stiffness warping to tackle the nonlinear large deformation. In our method, all node rotations are evaluated from sampling points in attached skeleton by con- structing and solving the diffusion partial differential equation. The experiments indicated that the method can enhance the sta- bility of the dynamics and avoid fussy sub-step calculation in static deformation edition. Moreover, rational deformation results for the area around the skeleton joints can be simulated without user interaction by adopting the simplified technique.展开更多
Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as t...Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified.展开更多
For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of severa...For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the movi...Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.展开更多
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attr...Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.展开更多
A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using ...A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.展开更多
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta ...A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10232040, 10572002 and 10572003)
文摘A new direct method for solving unsymmetrical sparse linear systems(USLS) arising from meshless methods was introduced. Computation of certain meshless methods such as meshless local Petrov-Galerkin (MLPG) method need to solve large USLS. The proposed solution method for unsymmetrical case performs factorization processes symmetrically on the upper and lower triangular portion of matrix, which differs from previous work based on general unsymmetrical process, and attains higher performance. It is shown that the solution algorithm for USLS can be simply derived from the existing approaches for the symmetrical case. The new matrix factorization algorithm in our method can be implemented easily by modifying a standard JKI symmetrical matrix factorization code. Multi-blocked out-of-core strategies were also developed to expand the solution scale. The approach convincingly increases the speed of the solution process, which is demonstrated with the numerical tests.
文摘In the Lagrangian meshless(particle)methods,such as the smoothed particle hydrodynamics(SPH),moving particle semi-implicit(MPS)method and meshless local Petrov-Galerkin method based on Rankine source solution(MLPG_R),the Laplacian discretisation is often required in order to solve the governing equations and/or estimate physical quantities(such as the viscous stresses).In some meshless applications,the Laplacians are also needed as stabilisation operators to enhance the pressure calculation.The particles in the Lagrangian methods move following the material velocity,yielding a disordered(random)particle distribution even though they may be distributed uniformly in the initial state.Different schemes have been developed for a direct estimation of second derivatives using finite difference,kernel integrations and weighted/moving least square method.Some of the schemes suffer from a poor convergent rate.Some have a better convergent rate but require inversions of high order matrices,yielding high computational costs.This paper presents a quadric semi-analytical finite-difference interpolation(QSFDI)scheme,which can achieve the same degree of the convergent rate as the best schemes available to date but requires the inversion of significant lower-order matrices,i.e.3×3 for 3D cases,compared with 6×6 or 10×10 in the schemes with the best convergent rate.Systematic patch tests have been carried out for either estimating the Laplacian of given functions or solving Poisson’s equations.The convergence,accuracy and robustness of the present schemes are compared with the existing schemes.It will show that the present scheme requires considerably less computational time to achieve the same accuracy as the best schemes available in literatures,particularly for estimating the Laplacian of given functions.
基金the Science and Technology Research Project of Henan Province (242102231052)the Key Scientific Research Plan of Colleges and Universities in Henan Province (23B140006)the Natural Science Foundation of Jiangxi Province (20224BAB201018)。
文摘In this paper,a simple direct space-time semi-analytical meshless scheme is proposed for the numerical approximation of the coupled Burgers'equations.During the whole solution procedure,two different schemes are considered in terms of radial and non-radial basis functions.The time-dependent variable in the first radial scheme is directly considered as the normal space variables to formulate an"isotropic"space-time radial basis function.The second non-radial scheme considered relationship between time-dependent and spacedependent variables.Under such circumstance,we can get a one-step space-time meshless scheme.The numerical findings demonstrate that the proposed meshless schemes are precise,user-friendly,and effective in solving the coupled Burgers'equations.
基金Supported by Anhui Provincial Natural Science Foundation(1908085QA09)
文摘A simple direct space-time meshless scheme,based on the radial or non-radial basis function,is proposed for the onedimensional Klein-Gordon equations.Since these equations are time-dependent,it is worthwhile to present two schemes for the basis functions from radial and non-radial aspects.The first scheme is fulfilled by considering time variable as normal space variable,to construct an"isotropic"space-time radial basis function.The other scheme considered a realistic relationship between space variable and time variable which is not radial.The timedependent variable is treated regularly during the whole solution process and the Klein-Gordon equations can be solved in a direct way.Numerical results show that the proposed meshless schemes are simple,accurate,stable,easy-to-program and efficient for the Klein-Gordon equations.
文摘Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are “truly” meshless methods.
文摘Meshless or mesh-free (or shorten as MFree) methods have been proposed and achieved remarkable progress over the past few years. The idea of combining MFree methods with other existing numerical techniques such as the finite element method (FEM) and the boundary element method (BEM), is naturally of great interest in many practical applications. However, the shape functions used in some MFree methods do not have the Kronecker delta function property. In order to satisfy the combined conditions of displacement compatibility, two numerical techniques, using the hybrid displacement shape function and the modified variational form, are developed and discussed in this paper. In the first technique, the original MFree shape functions are modified to the hybrid forms that possess the Kronecker delta function property. In the second technique, the displacement compatibility is satisfied via a modified variational form based on the Lagrange multiplier method. Formulations of several coupled methods are presented. Numerical exam- ples are presented to demonstrate the effectiveness of the present coupling methods.
文摘This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.
基金National Natural Science Foundation of China(Grant No.11971085)Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-jqX0011)。
文摘Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions.The reproducing kernel gradient smoothing integration(RKGSI)is one of the optimal numerical integration techniques in Galerkin meshless methods with minimum integration points.In this paper,properties,quadrature rules and the effect of the RKGSI on meshless methods are analyzed.The existence,uniqueness and error estimates of the solution of Galerkin meshless methods under numerical integration with the RKGSI are established.A procedure on how to choose quadrature rules to recover the optimal convergence rate is presented.
基金Supported by the National Science Foundation (Grant Nos. CCF-0727098, IIS-0710819)
文摘As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects' size, geometry, and topology. As a consequence, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing, and poses new challenges which have not been fully resolved by the state-of-art graphical techniques. In this paper, we address the challenges by proposing a meshless computational framework for dynamic modeling and simulation of solids and thin-shells represented as point sam- ples. Our meshless framework can directly compute the elastic deformation and fracture propagation for any scanned point geometry, without the need of converting them to polygonal meshes or higher order spline representations. We address the necessary computational techniques, such as Moving Least Squares, Hierarchical Discretization, and Modal Warping, to effectively and efficiently compute the physical simulation in real-time. This meahless computational framework aims to bridge the gap between the point-sampled geometry with physics-based modeling and simulation governed by partial differential equations.
基金funded by the 14th Five-Year Plan Major Science and Technology Project of CNOOC project number KJGG2021-0506.
文摘After a long period of water flooding development,the oilfield has entered the middle and high water cut stage.The physical properties of reservoirs are changed by water erosion,which directly impacts reservoir development.Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction,presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics.Although such simplifications reduce computational complexity,they introduce substantial descriptive inaccuracies.Therefore,this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics.This method avoids the meshing in traditional numerical simulation methods.From the fluid flow perspective,the reservoir’s computational domain is discretized into a series of connection units.An influence domain with a certain radius centered on the nodes is selected,and one-dimensional connection units are established between the nodes to achieve the characterization of the flow topology structure of the reservoir.In order to reflect the dynamic evolution of the reservoir’s physical properties during the water injection development process,the time-varying characteristics are incorporated into the formula of the seepage characteristic parameters in the meshless calculation.The change relationship of the permeability under different surface fluxes is considered to update the calculated connection conductivity in real time.By combining with the seepage control equation for solution,a time-varying meshless numerical simulation method is formed.The results show that compared with the numerical simulationmethod of the connection elementmethod(CEM)that only considers static parameters,this method has higher simulation accuracy and can better simulate the real migration and distribution of oil and water in the reservoir.Thismethod improves the accuracy of reservoir numerical simulation and the development effect of oilfields,providing a scientific basis for optimizing the water injection strategy,adjusting the production plan,and extending the effective production cycle of the oilfield.
基金the Scientific Foundation of National Outstanding Youth of China(No.50225520)the Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312102) and the National Natural Science Foun-dation of China (Nos. 60021201, 60333010 and 60505001)
文摘A meshless simulation system is presented for elastic deformation driven by skeleton in this paper. In this system, we propose a new method for calculating node rotation while applying a similar technique with stiffness warping to tackle the nonlinear large deformation. In our method, all node rotations are evaluated from sampling points in attached skeleton by con- structing and solving the diffusion partial differential equation. The experiments indicated that the method can enhance the sta- bility of the dynamics and avoid fussy sub-step calculation in static deformation edition. Moreover, rational deformation results for the area around the skeleton joints can be simulated without user interaction by adopting the simplified technique.
基金supported by the Scientific Foundation of National Outstanding Youth of China(No.50225520)Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘Using the two-scale decomposition technique, the h-adaptive meshless local Petrov- Galerkin method for solving Mindlin plate and shell problems is presented. The scaling functions of B spline wavelet are employed as the basis of the moving least square method to construct the meshless interpolation function. Multi-resolution analysis is used to decompose the field variables into high and low scales and the high scale component can commonly represent the gradient of the solution according to inherent characteristics of wavelets. The high scale component in the present method can directly detect high gradient regions of the field variables. The developed adaptive refinement scheme has been applied to simulate actual examples, and the effectiveness of the present adaptive refinement scheme has been verified.
文摘For many years finite element method(FEM)was the chosen numerical method for the analysis of composite structures.However,in the last 20 years,the scientific community has witnessed the birth and development of several meshless methods,which are more flexible and equally accurate numerical methods.The meshless method used in this work is the natural neighbour radial point interpolation method(NNRPIM).In order to discretize the problem domain,the NNRPIM only requires an unstructured nodal distribution.Then,using the Voronoi mathematical concept,it enforces the nodal connectivity and constructs the background integration mesh.The NNRPIM shape functions are constructed using the radial point interpolation technique.In this work,the displacement field of composite laminated plates is defined by high-order shear deformation theories.In the end,several antisymmetric cross-ply laminates were analysed and the NNRPIM solutions were compared with the literature.The obtained results show the efficiency and accuracy of the NNRPIM formulation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundation of Ningbo City,China(GrantNo.2013A610103)+2 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6090131)the Disciplinary Project of Ningbo City,China(GrantNo.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China
文摘Fractional diffusion equations have been the focus of modeling problems in hydrology, biology, viscoelasticity, physics, engineering, and other areas of applications. In this paper, a meshfree method based on the moving Kriging inter- polation is developed for a two-dimensional time-fractional diffusion equation. The shape function and its derivatives are obtained by the moving Kriging interpolation technique. For possessing the Kronecker delta property, this technique is very efficient in imposing the essential boundary conditions. The governing time-fractional diffusion equations are transformed into a standard weak formulation by the Galerkin method. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard central difference method. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in detail.
基金supported by the Natural Science Foundation of Ningbo,China (Grant Nos.2009A610014 and 2009A610154)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y6090131)
文摘Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.
基金supported by the National 973 Scientific and Technological Innovation Project (No. 2004CB719402)National Natural Science Foundation of China (No. 10672055)+3 种基金Key Project of NSFC (No. 60635020)Natural Science Foundation for Out standing Youth of China (No. 50625519)Hunan Provincial Natural Science Foundation of China (No. 07JJ6002)Scientific Research Fund of Hunan Provincial Education Department of China (No. 08C230)
文摘A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function,and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function,and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China(No.11176035)
文摘A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.