Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stere...Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality.However,some state-of-the-art methods rely on the global Delaunay-based optimization formed by all the points and cameras;thus,they encounter scaling problems when dealing with large scenes.To circumvent these limitations,this study proposes a scalable pointcloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and memory usage.Firstly,the entire scene is divided along the x and y axes into several overlapping chunks so that each chunk can satisfy the memory limit.Then,the Delaunay-based optimization is performed to extract meshes for each chunk in parallel.Finally,the local meshes are merged together by resolving local inconsistencies in the overlapping areas between the chunks.We test the proposed method on three city-scale scenes with hundreds of millions of points and thousands of images,and demonstrate its scalability,accuracy,and completeness,compared with the state-of-the-art methods.展开更多
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac...A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.展开更多
基金This work was supported by the Natural Science Foundation of China(Nos.61632003,61873265)。
文摘Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality.However,some state-of-the-art methods rely on the global Delaunay-based optimization formed by all the points and cameras;thus,they encounter scaling problems when dealing with large scenes.To circumvent these limitations,this study proposes a scalable pointcloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and memory usage.Firstly,the entire scene is divided along the x and y axes into several overlapping chunks so that each chunk can satisfy the memory limit.Then,the Delaunay-based optimization is performed to extract meshes for each chunk in parallel.Finally,the local meshes are merged together by resolving local inconsistencies in the overlapping areas between the chunks.We test the proposed method on three city-scale scenes with hundreds of millions of points and thousands of images,and demonstrate its scalability,accuracy,and completeness,compared with the state-of-the-art methods.
文摘A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.