Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update appro...Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.展开更多
This work presents a moving mesh methodology based on the solution of a pseudo flow problem.The mesh motion is modeled as a pseudo Stokes problem solved by an explicit finite element projection method.The mesh quality...This work presents a moving mesh methodology based on the solution of a pseudo flow problem.The mesh motion is modeled as a pseudo Stokes problem solved by an explicit finite element projection method.The mesh quality requirements are satisfied by employing a null divergent velocity condition.This methodology is applied to triangular unstructured meshes and compared to well known approaches such as the ones based on diffusion and pseudo structural problems.One of the test cases is an airfoil with a fully meshed domain.A specific rotation velocity is imposed as the airfoil boundary condition.The other test is a set of two cylinders that move toward each other.A mesh quality criteria is employed to identify critically distorted elements and to evaluate the performance of each mesh motion approach.The results obtained for each test case show that the pseudo-flow methodology produces satisfactory meshes during the moving process.展开更多
In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for mo...In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.展开更多
Five prediction experiments are carried out with two typhoons in 1992 using a limited -arca primitiveequations and two-way interactive model in a movable ,nested mesh. The result indicates good agreementin terms of mo...Five prediction experiments are carried out with two typhoons in 1992 using a limited -arca primitiveequations and two-way interactive model in a movable ,nested mesh. The result indicates good agreementin terms of motion between the prediction and observation. Studying the asymmetric structure in the cas-es selected, a close link is uncovered between the temporal evolutions of the structure and the track of motion in a tropical cyclone. Understanding of real asymmetric structure will help to improve the skill offorecasting tropical cyclones.展开更多
Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused ...Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused by the discrete procedure in GCL can significantly increase,and a direct consequence is that the calculated cell volume may become negative.To control the cumulative error,a new discrete GCL(D-GCL)is proposed.Unlike the original D-GCL,the proposed method uses the control volume analytically evaluated according to the grid motion at the time level n,instead of using the calculated value from the D-GCL itself.Error analysis indicates that the truncation error of the numerical scheme is guaranteed to be the same order as that obtained from the original D-GCL,while the accumulated error is greatly reduced.For validation,two challenging large deformation cases including a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case are selected to be investigated.Good agreements are found between the calculated results and some other literature data,demonstrating the feasibility of the proposed D-GCL for unidirectional motions with large displacements.展开更多
基金the National Natural Science Foundation of China(No.50778111)the Doctoral Disciplinary Special Research Project of Chinese Ministry of Education(No.200802480056)the Key Project of Fund of Science Technology Development of Shanghai(No.07JC14023)
文摘Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.
文摘This work presents a moving mesh methodology based on the solution of a pseudo flow problem.The mesh motion is modeled as a pseudo Stokes problem solved by an explicit finite element projection method.The mesh quality requirements are satisfied by employing a null divergent velocity condition.This methodology is applied to triangular unstructured meshes and compared to well known approaches such as the ones based on diffusion and pseudo structural problems.One of the test cases is an airfoil with a fully meshed domain.A specific rotation velocity is imposed as the airfoil boundary condition.The other test is a set of two cylinders that move toward each other.A mesh quality criteria is employed to identify critically distorted elements and to evaluate the performance of each mesh motion approach.The results obtained for each test case show that the pseudo-flow methodology produces satisfactory meshes during the moving process.
文摘In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.
文摘Five prediction experiments are carried out with two typhoons in 1992 using a limited -arca primitiveequations and two-way interactive model in a movable ,nested mesh. The result indicates good agreementin terms of motion between the prediction and observation. Studying the asymmetric structure in the cas-es selected, a close link is uncovered between the temporal evolutions of the structure and the track of motion in a tropical cyclone. Understanding of real asymmetric structure will help to improve the skill offorecasting tropical cyclones.
基金supported by the National Basic Research Program of China(″973″Project)(No.2014CB046200)
文摘Numerical simulations of unsteady flow problems with moving boundaries commonly require the use of geometric conservation law(GCL).However,in cases of unidirectional large mesh deformation,the cumulative error caused by the discrete procedure in GCL can significantly increase,and a direct consequence is that the calculated cell volume may become negative.To control the cumulative error,a new discrete GCL(D-GCL)is proposed.Unlike the original D-GCL,the proposed method uses the control volume analytically evaluated according to the grid motion at the time level n,instead of using the calculated value from the D-GCL itself.Error analysis indicates that the truncation error of the numerical scheme is guaranteed to be the same order as that obtained from the original D-GCL,while the accumulated error is greatly reduced.For validation,two challenging large deformation cases including a rotating circular cylinder case and a descending GAW-(1)two-element airfoil case are selected to be investigated.Good agreements are found between the calculated results and some other literature data,demonstrating the feasibility of the proposed D-GCL for unidirectional motions with large displacements.