In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
By using the Nevanlinna value distribution theory, we will mainly investigate the form of entire solutions with finite order on a type of system of differential-difference equations and a type of differential-differen...By using the Nevanlinna value distribution theory, we will mainly investigate the form of entire solutions with finite order on a type of system of differential-difference equations and a type of differential-difference equations, two interesting results are obtained. And it extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.展开更多
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘By using the Nevanlinna value distribution theory, we will mainly investigate the form of entire solutions with finite order on a type of system of differential-difference equations and a type of differential-difference equations, two interesting results are obtained. And it extends some results concerning complex differential(difference) equations to the systems of differential-difference equations.