Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w...Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.展开更多
Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict...Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict key performance indicators(PIs)of pavement,namely the international roughness index(IRI)and rutting depth(RD).Subsequently,we propose a comprehensive performance indicator for the pavement quality index(PQI),which leverages the highway performance assessment standard method,entropy weight method,and fuzzy comprehensive evaluation method.This indicator can evaluate the overall performance condition of the pavement.The data used for the model development and analysis are extracted from tests on two full-scale accelerated test tracks,called MnRoad and RIOHTrack.Six variables are used as predictors,including temperature,precipitation,total traffic volume,asphalt surface layer thickness,pavement age,and maintenance condition.Furthermore,wavelet denoising is performed to analyze the impact of missing or abnormal data on the LSTM model accuracy.In comparison to a traditional autoregressive integrated moving average(ARIMAX)model,the proposed LSTM model performs better in terms of PI prediction and resiliency to noise.Finally,the overall prediction accuracy of our proposed performance indicator PQI is 93.8%.展开更多
建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然...建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。展开更多
针对飞行器飞行试验中外测级间段数据缺失和精度不高的问题,提出了基于长短期记忆(long-short term memory,LSTM)网络的外测级间段数据预测方法。利用遥测视速度数据和外测融合数据建立LSTM网络回归模型,将外测级间段数据作为缺失数据...针对飞行器飞行试验中外测级间段数据缺失和精度不高的问题,提出了基于长短期记忆(long-short term memory,LSTM)网络的外测级间段数据预测方法。利用遥测视速度数据和外测融合数据建立LSTM网络回归模型,将外测级间段数据作为缺失数据进行预测插值,可将制导工具系统误差以及飞行器初始误差,包括遥外测时间对不准误差,一并利用回归网络表示,从而将遥测视速度数据作为网络输入,得到外测级间段的预测数据。试验数据处理结果证明,基于LSTM网络获得的外测级间段预测数据满足精度要求,所提方法具有实际应用价值。展开更多
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST...针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。展开更多
Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of ...Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of the exchange rate between two currencies.However,incorrect predictions in Forex may cause much higher losses than in other typical financial markets.The direction prediction requirement makes the problem quite different from other typical time-series forecasting problems.In this work,we used a popular deep learning tool called“long short-term memory”(LSTM),which has been shown to be very effective in many time-series forecasting problems,to make direction predictions in Forex.We utilized two different data sets—namely,macroeconomic data and technical indicator data—since in the financial world,fundamental and technical analysis are two main techniques,and they use those two data sets,respectively.Our proposed hybrid model,which combines two separate LSTMs corresponding to these two data sets,was found to be quite successful in experiments using real data.展开更多
The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cut...The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.展开更多
基金This work is supported by the National Key Research and Development Program of China(No.2023YFB4203000)the National Natural Science Foundation of China(No.U22A20178)
文摘Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively.
基金supported by the National Key Research and Development Program of China(No.2021YFB2600300).
文摘Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict key performance indicators(PIs)of pavement,namely the international roughness index(IRI)and rutting depth(RD).Subsequently,we propose a comprehensive performance indicator for the pavement quality index(PQI),which leverages the highway performance assessment standard method,entropy weight method,and fuzzy comprehensive evaluation method.This indicator can evaluate the overall performance condition of the pavement.The data used for the model development and analysis are extracted from tests on two full-scale accelerated test tracks,called MnRoad and RIOHTrack.Six variables are used as predictors,including temperature,precipitation,total traffic volume,asphalt surface layer thickness,pavement age,and maintenance condition.Furthermore,wavelet denoising is performed to analyze the impact of missing or abnormal data on the LSTM model accuracy.In comparison to a traditional autoregressive integrated moving average(ARIMAX)model,the proposed LSTM model performs better in terms of PI prediction and resiliency to noise.Finally,the overall prediction accuracy of our proposed performance indicator PQI is 93.8%.
文摘建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。
文摘针对飞行器飞行试验中外测级间段数据缺失和精度不高的问题,提出了基于长短期记忆(long-short term memory,LSTM)网络的外测级间段数据预测方法。利用遥测视速度数据和外测融合数据建立LSTM网络回归模型,将外测级间段数据作为缺失数据进行预测插值,可将制导工具系统误差以及飞行器初始误差,包括遥外测时间对不准误差,一并利用回归网络表示,从而将遥测视速度数据作为网络输入,得到外测级间段的预测数据。试验数据处理结果证明,基于LSTM网络获得的外测级间段预测数据满足精度要求,所提方法具有实际应用价值。
文摘针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。
文摘Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of the exchange rate between two currencies.However,incorrect predictions in Forex may cause much higher losses than in other typical financial markets.The direction prediction requirement makes the problem quite different from other typical time-series forecasting problems.In this work,we used a popular deep learning tool called“long short-term memory”(LSTM),which has been shown to be very effective in many time-series forecasting problems,to make direction predictions in Forex.We utilized two different data sets—namely,macroeconomic data and technical indicator data—since in the financial world,fundamental and technical analysis are two main techniques,and they use those two data sets,respectively.Our proposed hybrid model,which combines two separate LSTMs corresponding to these two data sets,was found to be quite successful in experiments using real data.
基金National Natural Science Foundation of China(No.51805079)Shanghai Natural Science Foundation,China(No.17ZR1400600)Fundamental Research Funds for the Central Universities,China(No.16D110309)
文摘The healthy condition of the milling tool has a very high impact on the machining quality of the titanium components.Therefore,it is important to recognize the healthy condition of the tool and replace the damaged cutter at the right time.In order to recognize the health condition of the milling cutter,a method based on the long short term memory(LSTM)was proposed to recognize tool health state in this paper.The various signals collected in the tool wear experiments were analyzed by time-domain statistics,and then the extracted data were generated by principal component analysis(PCA)method.The preprocessed data extracted by PCA is transmitted to the LSTM model for recognition.Compared with back propagation neural network(BPNN)and support vector machine(SVM),the proposed method can effectively utilize the time-domain regulation in the data to achieve higher recognition speed and accuracy.