期刊文献+
共找到55,612篇文章
< 1 2 250 >
每页显示 20 50 100
Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用
1
作者 胡玲艳 陈鹏宇 +6 位作者 郭占俊 徐国辉 秦山 付康 盖荣丽 汪祖民 张雨萌 《郑州大学学报(理学版)》 北大核心 2026年第1期78-86,共9页
为了精准预测温室蓝莓基质的温湿度变化趋势,提出一种融合Informer-LSTM算法的温湿度预测方法。以温室蓝莓现场环境数据为研究对象,使用LSTM算法捕捉时间序列数据中的依赖关系并与自注意力机制相结合,使模型在聚焦自注意力特征的同时兼... 为了精准预测温室蓝莓基质的温湿度变化趋势,提出一种融合Informer-LSTM算法的温湿度预测方法。以温室蓝莓现场环境数据为研究对象,使用LSTM算法捕捉时间序列数据中的依赖关系并与自注意力机制相结合,使模型在聚焦自注意力特征的同时兼顾LSTM特征,以增强其长期记忆力。在生成初步预测序列后,再应用LSTM算法修正模型的短期注意力,提高模型的反应速度。实验结果显示,Informer-LSTM预测模型在预测准确率、鲁棒性和响应速度等方面都有显著的优势。当温度湿度等时序输入数据发生明显变化时,模型能快速捕获短期内输入数据的动态模式变化。该模型在智慧温室管理中,对辅助人工决策及实现智能化控制具有较高实际价值。 展开更多
关键词 智慧农业 温室蓝莓 Informer模型 lstm模型 温湿度预测
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
2
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 lstm-Transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
基于CNN-LSTM方法的液环泵非稳态流场预测分析
3
作者 张人会 唐玉 +1 位作者 郭广强 陈学炳 《农业机械学报》 北大核心 2026年第1期273-279,共7页
为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,... 为实现对液环泵内非稳态气液两相流场的快速预测,提出了一种基于深度学习的非定常周期性流场预测方法,可以实现样本集之后未来一定时间段内流场的高精度快速预测。通过对液环泵非稳态CFD结果获取的各时间步上的流场快照建立流场数据集,利用卷积神经网络(CNN)对流场快照进行特征提取,并结合长短期记忆神经网络(LSTM)构建时间序列神经网络预测模型,预测结果与CFD数值模拟结果进行对比,分析表明,CNN-LSTM模型能够实现对未来时刻非稳态流场的高精度预测;相态场、压力场、温度场的预测结果平均相对误差分别为1.37%、1.28%、1.78%;在利用LSTM预测壳体及进口压力脉动时,在样本集之后叶轮旋转360°时间上平均相对误差分别为1.61%、0.09%、0.20%。在样本空间外的预测集上,CNN-LSTM的预测性能优于本征正交分解(POD)方法,尽管在外延时间序列上的预测精度随时间增加逐渐下降,但在整个时间历程上保持了较好的预测精度,在预测内流场结果方面具有显著优势。 展开更多
关键词 液环泵 非稳态流场 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
结合注意力机制的ConvLSTM与新安江模型相融合的混合水文模型
4
作者 张珂 刘杰 +2 位作者 王宇昊 申笑萱 齐千嘉 《水资源保护》 北大核心 2026年第1期137-143,151,共8页
为提高新安江模型(XAJ)在中小流域汇流计算中的精度,构建了结合注意力机制的卷积长短期记忆神经网络(ConvLSTM),用于替代XAJ中的汇流模块,从而建立了结合物理机制与机器学习技术的混合水文模型XAJ-ACL,基于呈村流域实测数据,探究了XAJ-... 为提高新安江模型(XAJ)在中小流域汇流计算中的精度,构建了结合注意力机制的卷积长短期记忆神经网络(ConvLSTM),用于替代XAJ中的汇流模块,从而建立了结合物理机制与机器学习技术的混合水文模型XAJ-ACL,基于呈村流域实测数据,探究了XAJ-ACL在中小流域有限样本容量条件下的性能,并分别采用ConvLSTM和传统LSTM替代XAJ汇流模块,构建了混合水文模型XAJ-CL和XAJ-LSTM进行对比分析。结果表明:在呈村流域径流模拟中,XAJ-ACL的模拟精度优于XAJ,测试期XAJ-ACL的纳什效率系数为0.85,相关系数为0.93,均高于XAJ;在3组小容量样本训练中,测试期XAJ-ACL的平均纳什效率系数分别为0.847、0.832和0.808,均高于XAJ-CL和XAJ-LSTM,且模拟结果表现出更好的稳定性;与XAJ相比,XAJ-ACL显著提升了有限资料条件下对中小流域汇流过程非线性规律的模拟能力。 展开更多
关键词 新安江模型 注意力机制 卷积长短期记忆神经网络 混合水文模型 汇流过程 径流模拟 呈村流域
在线阅读 下载PDF
基于自适应融合CNN—OF特征和LSTM网络的猪攻击行为识别
5
作者 陈晨 孙博 +3 位作者 Juan Steibel Janice Siegford 韩俊杰 Tomas Norton 《中国农机化学报》 北大核心 2026年第2期275-282,共8页
为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集... 为识别群养猪攻击行为,提出一种基于自适应融合CNN—OF特征和LSTM网络的算法。在两个猪栏中每栏混养8头猪3天,每天收集8 h的视频作为数据集。从猪栏1的3天视频中标记出1200个攻击1 s片段和1200个非攻击1 s片段,选择80%的片段作为训练集,其余20%作为验证集。从猪栏2的3天视频中标记出1254个攻击1 s片段和85146个非攻击1 s片段作为测试集。首先,采用Horn—Schunck(HS)方法计算光流(OF)的大小和方向角,并根据CNN特征图的维度划分光流方向角的范围。然后,在每个方向角范围内统计光流大小的直方图,通过空间维度变换将直方图转化为特征图。最后,通过权重叠加将此特征图与CNN特征图进行自适应融合并输入LSTM网络以识别攻击。采用VGG16—OF—LSTM、ResNet50—OF—LSTM、InceptionV3—OF—LSTM和Xception—OF—LSTM算法识别猪攻击行为的准确率分别为97.5%、97.8%、98.7%、99.3%。结果表明,CNN—OF—SLTM算法能够识别猪攻击行为。提出的自适应特征融合方法CNN—OF具有一定通用性。 展开更多
关键词 群养猪 攻击识别 卷积神经网络 光流 自适应融合 长短期记忆
在线阅读 下载PDF
基于Informer-SAO-LSTM的刀具磨损预测
6
作者 李昂 马俊燕 唐源斌 《组合机床与自动化加工技术》 北大核心 2026年第1期151-155,161,共6页
在产品加工过程中,准确预测刀具的磨损值既能避免过早更换造成的成本浪费,又可防止过度磨损影响加工精度,从而最大化发挥刀具寿命的价值。为了解决这个问题,提出了一种基于Informer、SAO与LSTM结合的深度学习网络模型,用于刀具磨损预测... 在产品加工过程中,准确预测刀具的磨损值既能避免过早更换造成的成本浪费,又可防止过度磨损影响加工精度,从而最大化发挥刀具寿命的价值。为了解决这个问题,提出了一种基于Informer、SAO与LSTM结合的深度学习网络模型,用于刀具磨损预测。Informer具有高效的编码器结构和稀疏自注意力机制,而LSTM网络具有较强的时间序列建模能力,通过SAO算法对超参数的调整,可以更准确高效地捕捉刀具磨损过程中长期的依赖关系,从而提取更有效的特征,提升了模型在处理长序列数据时的效率和准确性。使用PHM2010数据集进行对比实验,实验结果表明所提出的Informer-SAO-LSTM模型在MAE、RMSE等多项指标上均表现出色,最后设计了实验进行验证,进一步说明了所提出的方法比对比模型的预测准确率更高,泛化能力更好。 展开更多
关键词 lstm INFORMER SAO 刀具磨损 深度学习 时间序列预测
在线阅读 下载PDF
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
7
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 Floating offshore wind turbine(FOWT) Long short-term memory(lstm)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
Road pavement performance prediction using a time series long short-term memory (LSTM) model
8
作者 Chuanchuan HOU Huan WANG +1 位作者 Wei GUAN Jun CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期424-437,共14页
Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict... Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement.To this end,we develop a time series long short-term memory(LSTM)model to predict key performance indicators(PIs)of pavement,namely the international roughness index(IRI)and rutting depth(RD).Subsequently,we propose a comprehensive performance indicator for the pavement quality index(PQI),which leverages the highway performance assessment standard method,entropy weight method,and fuzzy comprehensive evaluation method.This indicator can evaluate the overall performance condition of the pavement.The data used for the model development and analysis are extracted from tests on two full-scale accelerated test tracks,called MnRoad and RIOHTrack.Six variables are used as predictors,including temperature,precipitation,total traffic volume,asphalt surface layer thickness,pavement age,and maintenance condition.Furthermore,wavelet denoising is performed to analyze the impact of missing or abnormal data on the LSTM model accuracy.In comparison to a traditional autoregressive integrated moving average(ARIMAX)model,the proposed LSTM model performs better in terms of PI prediction and resiliency to noise.Finally,the overall prediction accuracy of our proposed performance indicator PQI is 93.8%. 展开更多
关键词 Asphalt pavement performance model International roughness index(IRI) Rutting depth(RD) Long short-term memory(lstm)model Pavement management system
原文传递
基于LSTM神经网络预测转炉炉壁温度周期性波动
9
作者 陈习堂 孙鼎然 +3 位作者 张鑫 高荣 王恩志 徐建新 《有色金属(冶炼部分)》 北大核心 2026年第1期9-19,共11页
针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、... 针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、端盖西四部位的红外热像仪采集时序温度数据,创新性地采用模板区域提取与灰度差异分析算法对摇炉遮挡等异常图像进行预处理,有效提升数据质量。在此基础上,构建LSTM预测模型,利用其门控机制捕捉温度序列的长期依赖关系,实现对未来温度趋势的精准预测。工业验证结果表明,该模型在炉腹和端盖西的预测平均绝对误差(MAE)为1.35~1.44℃,风眼区等复杂工况下MAE控制在3.66~4.20℃,显著优于传统方法。该方法能够可靠识别炉衬蚀损引起的温度上升趋势,为转炉预测性维护提供数据支撑,对保障安全生产、延长炉寿及推动冶炼智能化具有重要工程价值。 展开更多
关键词 PS转炉 lstm神经网络 温度预测 预测性维护 图像匹配
在线阅读 下载PDF
A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection
10
作者 Hamza Murad Khan Shakila Basheer +3 位作者 Mohammad Tabrez Quasim Raja`a Al-Naimi Vijaykumar Varadarajan Anwar Khan 《Computers, Materials & Continua》 2026年第1期1024-1048,共25页
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex... With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models. 展开更多
关键词 Fake news detection tokenization SMOTE text-to-text transfer transformer(T5) long short-term memory(lstm) self-attention mechanism(SA) T5-SA-lstm WELFake dataset FakeNewsPrediction dataset
在线阅读 下载PDF
基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识
11
作者 张竹露 李华强 +1 位作者 刘洋 许立雄 《广西师范大学学报(自然科学版)》 北大核心 2026年第1期33-44,共12页
通过非侵入式负荷监测(non-intrusive load monitoring,NILM)对负荷能耗进行实时监测和数据分析,能够实现能源合理配置和精细化管理。为了提高负荷标注数据不足情况下NILM的负荷识别效果,本文提出一种基于Bi-LSTM特征融合和微调小样本学... 通过非侵入式负荷监测(non-intrusive load monitoring,NILM)对负荷能耗进行实时监测和数据分析,能够实现能源合理配置和精细化管理。为了提高负荷标注数据不足情况下NILM的负荷识别效果,本文提出一种基于Bi-LSTM特征融合和微调小样本学习(fine-tuned few-shot learning,FT-FSL)的新方法应用于NILM。首先,通过Bi-LSTM将加权像素电压-电流(voltage-current,V-I)图像特征和多维时频序列特征进行融合;然后,通过FT-FSL使负荷分类模型能够基于少量标注数据进行训练;最后,在PLAID数据集上与4种主流FSL方法(包括匹配网络、原型网络、关系网络和MAML)进行对比实验。结果表明,本文方法的准确率达到92.46%,与对比模型相比,分别提高12.21个百分点、4.18个百分点、5.90个百分点和9.04个百分点,验证了本文方法能够有效识别标注数据不足的负荷类型。 展开更多
关键词 非侵入式负荷监测 负荷辨识 小样本学习 Bi-lstm 微调
在线阅读 下载PDF
基于特征优选与IPSO-LSTM的变压器故障诊断
12
作者 胡俊泽 杨耿煌 +1 位作者 耿丽清 刘新宇 《电气传动》 2026年第1期89-96,共8页
针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利... 针对变压器故障诊断精度差、准确率低的问题,提出一种基于数据特征优选与改进粒子群优化算法的长短期记忆网络(IPSO-LSTM)的变压器故障诊断方法。首先对原始数据集进行预处理,使用合成少数类样本过采样技术(SMOTE)扩充数据数量;其次利用特征比值法扩充特征维数至20维,使用随机森林(RF)算法判断特征重要程度进行特征优选,降低过拟合风险;然后引入自适应惯性权重对PSO算法进行改进,利用改进后的PSO算法来优化LSTM最优超参数;最后输入特征优选后的数据进行变压器故障诊断。结果表明所构建的故障诊断模型诊断精度为91.6%。该优化模型与LSTM,HBA-LSTM和PSO-LSTM诊断模型相比,准确率分别提高了10.12%,5.95%,3.57%,证明IPSO-LSTM诊断模型有更高的诊断准确率,在变压器故障诊断领域有一定的实际意义。 展开更多
关键词 变压器故障诊断 特征优选 随机森林 长短期记忆网络 粒子群优化算法
在线阅读 下载PDF
基于ARIMA-LSTM模型的MSWI过程CO_(2)排放浓度多步预测
13
作者 汤健 王子 +2 位作者 夏恒 王天峥 乔俊飞 《北京工业大学学报》 北大核心 2026年第2期175-188,共14页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程CO_(2)排放兼具线性趋势与非线性波动的复杂动态特性,现有单一预测难以准确拟合的问题,提出基于差分整合移动平均自回归-长短期记忆(autoregressive integrated moving a... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程CO_(2)排放兼具线性趋势与非线性波动的复杂动态特性,现有单一预测难以准确拟合的问题,提出基于差分整合移动平均自回归-长短期记忆(autoregressive integrated moving average-long short-term memory,ARIMA-LSTM)模型的CO_(2)排放浓度的多步预测方法。首先,采用ARIMA算法构建线性主模型以进行CO_(2)排放浓度预测;然后,以主模型的预测残差为真值,采用LSTM算法构建非线性补偿模型;最后,将主模型和补偿模型的预测值进行组合得到超前多步的预测结果。基于北京某MSWI工厂的真实CO_(2)数据集验证了所构建混合模型的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) CO_(2)排放 多步预测 差分整合移动平均自回归模型 长短期记忆(long short-term memory lstm)网络 混合模型
在线阅读 下载PDF
基于LSTM模型的远程建筑物沉降监测系统设计
14
作者 周渝琳 陈雨梦 张莉 《物联网技术》 2026年第1期45-49,共5页
针对传统沉降监测系统成本高、实时性差等问题,提出了一种高精度、实时化的分布式远程监测系统。该系统以STM32系列单片机为核心,子节点集成了MPU6050倾角传感器与VL6180激光测距模块以实现数据采集,并通过ZigBee模块将数据上传至主节... 针对传统沉降监测系统成本高、实时性差等问题,提出了一种高精度、实时化的分布式远程监测系统。该系统以STM32系列单片机为核心,子节点集成了MPU6050倾角传感器与VL6180激光测距模块以实现数据采集,并通过ZigBee模块将数据上传至主节点。主节点通过LCD屏实现数据显示,同时通过串口将数据转发至上位机进行解析。系统采用双层LSTM模型对沉降趋势进行预测,并利用DeepSeek大模型对采集到的数据进行评估,评估结果通过HTTPS同步至部署有Nginx与Flask框架的云服务器,再由云端推送至Android Unity3D移动端完成交互。系统测试结果表明,其测量精度可达±2 mm,ZigBee视距通信超50 m,LSTM预测平均绝对误差小于3%,整体运行稳定可靠,满足设计需求,为建筑沉降监测提供了实用方案。 展开更多
关键词 STM32 沉降监测 物联网 ZIGBEE lstm DeepSeek大模型
在线阅读 下载PDF
基于注意力机制的LSTM多因素滨海航道水深预测及应用研究
15
作者 凌干展 韩玉 +6 位作者 解威威 唐睿楷 胡家锴 梁光越 曹璐 梁铭 刘祥 《工程科学与技术》 北大核心 2026年第1期266-275,共10页
为提高平陆运河航道施工运输的安全性、效率与精确性,本文提出一种基于注意力机制的长短期记忆网络(LSTM)多因素滨海航道水深预测模型,并将其集成于航道运输辅助决策平台中。首先,结合上游流量、日降雨量、潮流流速和潮汐水位等关键水... 为提高平陆运河航道施工运输的安全性、效率与精确性,本文提出一种基于注意力机制的长短期记忆网络(LSTM)多因素滨海航道水深预测模型,并将其集成于航道运输辅助决策平台中。首先,结合上游流量、日降雨量、潮流流速和潮汐水位等关键水文因子,构建基于LSTM的滨海航道水深预测模型。然后,引入注意力机制优化模型架构,提高模型在复杂水文环境下超长龄期水深预测的精度和稳定性。在此基础上,将模型集成至航道运输辅助决策平台中,实现水深预测及动态修正、通航窗口期评估等多模块协同工作。最后,通过与现有模型和实测数据的对比分析,验证模型的有效性。分析结果表明:相较于传统LSTM模型,基于注意力机制的LSTM模型在枯水期和丰水期水文地质环境条件下水深预测平均绝对误差(MAE)分别降低了64.68%和72.36%,决定系数R2分别提升了2.18%和5.60%;与单一特征向量相比,采用日降雨量、潮流流速和潮汐水位3特征向量组合模型,MAE值不超过0.15 m,R^(2)不低于0.99,显著提升模型对滨海航道复杂水文环境下水深预测的精度与稳定性。本文研究成果为提升航道运输智能化和数字化管理水平提供可靠的技术支撑。 展开更多
关键词 平陆运河 航道施工运输 航道水深预测 注意力机制 lstm模型 航道运输辅助决策平台
在线阅读 下载PDF
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
16
作者 黄林显 徐征和 +7 位作者 支传顺 李双 刘治政 邢立亭 朱恒华 王晓玮 毕雯雯 胡晓农 《地学前缘》 北大核心 2026年第1期419-431,共13页
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大... 岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change,Seasonality,and Trend)算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R 2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。 展开更多
关键词 北方岩溶 水位预测 多变量模拟 lstm_Attention神经网络
在线阅读 下载PDF
基于Prophet-LSTM模型的流感节假日效应分析及预测效果研究
17
作者 程文林 毛军军 +1 位作者 汪亦哲 吴家兵 《公共卫生与预防医学》 2026年第1期8-12,共5页
目的基于Prophet-LSTM混合模型探究节假日效应与防控措施对合肥市流感发展特征及发病趋势的影响,通过比较不同预测模型的性能,验证Prophet-LSTM模型在流感预测中的适用性。方法收集2016—2024年合肥市流感发病数据,构建Prophet-LSTM特... 目的基于Prophet-LSTM混合模型探究节假日效应与防控措施对合肥市流感发展特征及发病趋势的影响,通过比较不同预测模型的性能,验证Prophet-LSTM模型在流感预测中的适用性。方法收集2016—2024年合肥市流感发病数据,构建Prophet-LSTM特征分析与预测模型,分析节假日效应和防控措施对流感发病趋势的影响;同时建立ARIMA、GRU、TimeGPT等对比模型,在相同测试集上比较各模型的预测性能。结果分析表明,元旦、春节、国庆等节假日期间流感发病率显著上升,而防控措施实施期间发病率呈现下降趋势。Prophet-LSTM模型的预测值与实际值高度吻合,其MAE(0.209)、MSE(0.195)和IA(0.914)均优于对比模型,展现出更高的预测精度和趋势拟合能力。结论Prophet-LSTM模型能有效捕捉流感发病的时空特征,在纳入节假日效应和防控措施因素后表现出更好的预测性能,证明其在流感预测领域具有显著优势和应用价值。 展开更多
关键词 Prophet-lstm 流感 节假日效应 防控效应 预测模型
原文传递
Runoff simulation and prediction of typical basins in the Jiziwan Region of the Yellow River Basin based on Long Short-Term Memory(LSTM)neural network
18
作者 SUN Jiaqi ZHANG Jianyun +4 位作者 WANG Xiaojun WANG Ao WU Xijun ZOU Rui MIAO Ping 《Journal of Mountain Science》 2025年第10期3545-3563,共19页
This study employs the Long Short-Term Memory(LSTM)rainfall-runoff model to simulate and predict runoff in typical basins of the Jiziwan Region of the Yellow River,aiming to overcome the shortcomings of traditional hy... This study employs the Long Short-Term Memory(LSTM)rainfall-runoff model to simulate and predict runoff in typical basins of the Jiziwan Region of the Yellow River,aiming to overcome the shortcomings of traditional hydrological models in complex nonlinear environments.The Jiziwan Region of the Yellow River is affected by human activities such as urbanization,agricultural development,and water resource management,leading to increasingly complex hydrological processes.Traditional hydrological models struggle to effectively capture the relationship between rainfall and runoff.The LSTM rainfall-runoff model,using deep learning techniques,automatically extracts features from data,identifies complex patterns and long-term dependency in time series,and provides more accurate and reliable runoff predictions.The results demonstrate that the LSTM rainfall-runoff model adapts well to the complex hydrological characteristics of the Jiziwan Region,showing superior performance over traditional hydrological models,especially in addressing the changing trends under the influence of climate change and human activities.By analyzing the interannual and within-year variations of runoff under different climate change scenarios,the model can predict the evolution trends of runoff under future climate conditions,providing a scientific basis for water resource management and decision-making.The results indicate that under different climate change scenarios,the runoff in several typical basins of the Jiziwan Region exhibits different variation trends.Under SSP1-2.6 and SSP2-4.5,some basins,such as the Wuding River Basin,Tuwei River Basin,and Gushanchuan Basin,show a decreasing trend in annual runoff.For example,in the Wuding River Basin,the average runoff from 2025 to 2040 is 12.48 m^(3)/s(SSP1-2.6),with an annual decrease of 0.10 m^(3)/s;in the Tuwei River Basin,the runoff from 2025 to 2040 is 12.96 m^(3)/s(SSP1-2.6),with an annual decrease of 0.10 m^(3)/s.In contrast,under SSP3-7.0 and SSP5-8.5,with climate warming and changes in precipitation patterns,runoff in some basins shows an increasing trend,particularly during the snowmelt period and with increased summer precipitation,leading to a significant rise in runoff. 展开更多
关键词 lstm rainfall-runoff model Climate scenarios RUNOFF Yellow River Basin
原文传递
Bi-LSTM模型在遥感海浪数据质量控制中的应用
19
作者 满世豪 谢涛 +2 位作者 李建 王超 张雪红 《应用海洋学学报》 北大核心 2026年第1期65-71,共7页
在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异... 在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。 展开更多
关键词 遥感海浪数据 质量控制 深度学习 Bi-lstm模型 异常检测
在线阅读 下载PDF
基于改进CNN-LSTM模型利用水下噪声估计海面风速
20
作者 刘雪枫 李琪 +2 位作者 唐锐 尚大晶 夏峙 《声学学报》 北大核心 2026年第1期287-297,共11页
提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并... 提出一种将风成噪声特征与改进卷积神经网络-长短期记忆网络(CNN-LSTM)模型相结合估计海面风速的方法。首先,通过数据预处理计算噪声的能量谱级,以反映真实噪声强度变化;其次,利用能量谱级计算能量相关矩阵,找到风成噪声特征进行判断并作为特征向量输入;在此基础上,结合卷积神经网络获取特征以及长短期记忆网络学习时序信息的特点,建立了基于多特征的反演模型对风速进行估计。南海海上实验结果表明,所提模型风速估计的均方根误差小于0.3,与实际风速序列的相关系数高于0.97,吻合效果较好,各项评价指标均明显优于长短期记忆网络模型。 展开更多
关键词 海洋环境噪声 卷积神经网络 长短期记忆网格 风速估计
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部