期刊文献+
共找到50,205篇文章
< 1 2 250 >
每页显示 20 50 100
融合改进堆叠编码器和多层BiLSTM的入侵检测模型 被引量:3
1
作者 陈虹 姜朝议 +2 位作者 金海波 武聪 卢健波 《计算机工程与应用》 北大核心 2025年第3期306-314,共9页
针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称... 针对基于机器学习入侵检测模型需要大量特征工程,且对不平衡数据处理欠佳,导致检测率低、误报率高等问题。构建了一种SE-MBL的入侵检测模型。采用自适应合成采样(ADASYN)方法对少数类样本进行样本扩展,解决数据不平衡问题,形成相对对称的数据集。采用改进的堆叠自编码器进行数据降维,消除特征冗余,并引入Dropout机制来增强信息融合,提升模型的泛化能力。提出一种融合一维CNN和多层BiLSTM的模块,分别提取空间特征和时间特征,以提高模型的分类性能。在NSL-KDD和CICIDS2017数据集上的实验结果表明,该模型可以实现较高的正确率和召回率,优于传统机器学习和深度学习方法。 展开更多
关键词 网络安全 入侵检测 数据不平衡 数据降维 多层bilstm
在线阅读 下载PDF
基于情绪词典和BERT-BiLSTM的股指预测研究 被引量:3
2
作者 张少军 苏长利 《计算机工程与应用》 北大核心 2025年第4期358-367,共10页
股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-te... 股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-term memory,BERT-BiLSTM)对在线财经新闻提取情感特征,构建了融合情感特征和股票交易特征的股指预测模型。实验对比了融合情感特征前后模型的预测能力,并探讨了不同模型、不同时间周期下预测能力的差异。实验结果表明,融合词典法和深度学习技术提取的情感特征均能提升各模型股指预测的准确率。LSTM模型相较其他实验模型在融合情感特征前后的股指预测上均表现较好。进一步的时间跨度分析表明,股指预测模型在较短的时间跨度上对股票指数涨跌的预测能力更强。为验证股指预测模型的实际价值,对沪深300指数的牛熊市和震荡市进行回测分析,结合LSTM模型和深度Q网络(deep Q-network,DQN)原理,对比了传统均线策略以及结合DQN强化学习算法后股指回测差异。回测结果表明,相比于单一的传统交易策略,结合传统交易策略和深度学习方法的股票指数预测模型在牛熊市及震荡市中均保证了正的夏普比例和累积收益率,并有效控制了最大回撤,显示出更强的市场适应性和盈利能力。 展开更多
关键词 财经新闻情感特征 股指预测 bilstm模型 DQN强化学习
在线阅读 下载PDF
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
3
作者 王春兰 郭峰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 北大核心 2025年第4期71-78,84,共9页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能优于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 CNN bilstm
在线阅读 下载PDF
基于注意力机制的CNN-BiLSTM过闸流量预测模型
4
作者 何立新 沈正华 +1 位作者 张峥 雷晓辉 《水电能源科学》 北大核心 2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制... 在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。 展开更多
关键词 过闸流量预测 bilstm 注意力机制 神经网络
原文传递
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
5
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于KOA-BiLSTM的矿井淋水井筒风温预测模型及可解释性分析
6
作者 秦跃平 唐飞 +3 位作者 王海蓉 王鹏 郭铭彦 王世斌 《中国安全科学学报》 北大核心 2025年第7期40-47,共8页
为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同... 为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同样本条件下,与反向传播(BP)、随机森林(RF)、最小二乘增强(LSBoost)和支持向量机(SVM)算法进行综合对比;最后,利用沙普利可加性特征解释算法(SHAP)进行可解释性分析及实例验证。研究结果表明:KOA-BiLSTM模型的绝对误差范围为-1.24~0.5℃,比优化前模型的预测精度提高3.98%;与另外4个模型相比,该模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方误差(MSE)等均为最佳,表明该模型具有最优的预测效果和泛化能力;SHAP分析表明:井口风流温度对预测结果影响最大,而地面压力影响最小;KOA-BiLSTM模型实例验证的绝对误差范围为-0.49~0.38℃,预测精度可满足实际工作需要。 展开更多
关键词 开普勒优化算法(KOA)-双向长短期记忆网络(bilstm)模型 淋水井筒 风温预测模型 可解释性分析 皮尔逊相关性
原文传递
基于BiLSTM-Attention的议论文篇章要素识别 被引量:1
7
作者 刘佳旭 白再冉 张艳菊 《计算机系统应用》 2025年第5期202-211,共10页
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利... 篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性. 展开更多
关键词 双向长短期记忆网络 注意力机制 位置编码 篇章要素识别 多头注意力
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
8
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于VMD-TCN-BiLSTM-Attention的短期电力负荷预测
9
作者 刘义艳 李国良 代杰 《智慧电力》 北大核心 2025年第10期87-94,共8页
针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷... 针对短期电力负荷数据具有非线性和波动性等特点而导致的预测精度不足问题,提出一种基于变分模态分解(VMD)、时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)与注意力机制(Attention)相结合的新型预测模型。首先,采用VMD方法将电力负荷数据分解成多个不同频率的模态分量,利用TCN模型提取模态分量中的时序特征;其次,通过BiLSTM网络进一步挖掘序列依赖关系;最后,引入注意力机制对BiLSTM输出的特征进行加权处理。实验结果表明,所提模型与其他传统模型相比预测精度显著提升,在短期电力负荷预测中具有较高的应用价值。 展开更多
关键词 短期电力负荷 变分模态分解 时间卷积网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:3
10
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(bilstm) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
基于XLNet-BiLSTM-Attention模型的假新闻检测研究
11
作者 韩晓鸿 郭恒 杨港 《智能计算机与应用》 2025年第9期96-100,共5页
随着社交多元化和网络技术的发展,网络上开始出现虚假新闻,给个人和社会造成了不利的影响。针对此现象,本文提出基于XLNet-BiLSTM-Attention神经模型的检测方法。首先使用XLNet获取具有上下文依赖的词向量,然后通过BiLSTM双向门控单元... 随着社交多元化和网络技术的发展,网络上开始出现虚假新闻,给个人和社会造成了不利的影响。针对此现象,本文提出基于XLNet-BiLSTM-Attention神经模型的检测方法。首先使用XLNet获取具有上下文依赖的词向量,然后通过BiLSTM双向门控单元获取深层次语义信息,最后利用Attention机制根据特征的重要性赋予不同的特征权重,并进行文本真实性检测。本文模型与4种常用神经模型进行对比,准确率达到94%,均高于其他4种模型,从而验证了该模型的有效性。 展开更多
关键词 假新闻检测 神经模型 XLNet bilstm 特征权重
在线阅读 下载PDF
基于RIME-VMD-RIME-BiLSTM的短期风电功率预测
12
作者 王秀云 祝宏斌 《电气应用》 2025年第4期85-95,共11页
针对风电功率时间序列的随机性和波动性,为提高风电预测准确度,提出了一种结合霜冰优化算法(RIME)、变分模态分解(Variational Mode Decomposition,VMD)与双向长短期神经网络(Bidirectional Long Short-Term Memory,BiLSTM)的短期风电... 针对风电功率时间序列的随机性和波动性,为提高风电预测准确度,提出了一种结合霜冰优化算法(RIME)、变分模态分解(Variational Mode Decomposition,VMD)与双向长短期神经网络(Bidirectional Long Short-Term Memory,BiLSTM)的短期风电功率预测组合模型。首先,利用RIME算法对VMD的分解层数和惩罚因子寻优;然后,使用VMD对风电序列进行分解,得到不同频率且平稳的固有模态分量(Intrinsic Mode Function,IMF);接着,将各IMF输入至经RIME算法完成超参数寻优的BiLSTM中进行预测;最后,将各输出值进行叠加重构,得到最终结果。实验结果表明,所提预测模型在测试集上的预测误差指标分别为0.584、0.489和3.26%,均为最低值,验证了RIMEVMD-RIME-BiLSTM混合预测模型在风电功率预测领域具有较好的预测准确度和鲁棒性。 展开更多
关键词 风电功率 霜冰优化算法 变分模态分解 bilstm
原文传递
基于KAN-BiLSTM模型的股票指数预测研究
13
作者 赵涛 赵迎庆 《重庆科技大学学报(自然科学版)》 2025年第3期70-77,共8页
针对当前神经网络在长时间跨度的股票指数预测中精度和泛化能力不足的问题,提出一种融合可学习激活函数的KAN(Kolmogorov-Arnold network)与双向长短期记忆(BiLSTM)网络的新模型——KAN-BiLSTM。利用BiLSTM提取股票数据的双向时间特征,... 针对当前神经网络在长时间跨度的股票指数预测中精度和泛化能力不足的问题,提出一种融合可学习激活函数的KAN(Kolmogorov-Arnold network)与双向长短期记忆(BiLSTM)网络的新模型——KAN-BiLSTM。利用BiLSTM提取股票数据的双向时间特征,通过KAN强大的非线性函数逼近能力增强模型表达能力,提升整体预测性能。在多个长时间跨度的股票指数数据集上进行对比实验,结果显示KAN-BiLSTM模型的预测精度相比BiLSTM模型有所提高,在泛化性方面表现也更优,验证了其在股票指数预测中的有效性。 展开更多
关键词 神经网络 KAN模型 bilstm模型 长跨度股票数据
在线阅读 下载PDF
基于FSA优化CEEMDAN-VMD-BILSTM组合模型的短期负荷预测
14
作者 王金玉 李任武 孙佳怡 《化工自动化及仪表》 2025年第3期421-427,共7页
由于电力负荷数据的非平稳性和复杂性,传统预测模型难以有效捕捉数据中的关键特征,导致预测精度低,设计并实现了一种基于完全集成经验模态分解(CEEMDAN)和变分模态分解(VMD)的双向长短期记忆网络模型(BILSTM),并使用火烈鸟搜索算法(FSA... 由于电力负荷数据的非平稳性和复杂性,传统预测模型难以有效捕捉数据中的关键特征,导致预测精度低,设计并实现了一种基于完全集成经验模态分解(CEEMDAN)和变分模态分解(VMD)的双向长短期记忆网络模型(BILSTM),并使用火烈鸟搜索算法(FSA)优化短期电力负荷预测方法。首先,使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF);然后,对高频分量使用VMD进行进一步分解,以提取更多的特征;接着,使用FSA优化BILSTM模型的超参数,利用此模型对分解后的各个分量进行预测;最后,将各分量的预测结果线性相加,得到最终的负荷预测结果。实验结果表明:所提方法的平均绝对误差在0.6%~0.8%,并且在平均绝对百分比误差、均方根误差等评价指标上表现优异,相较于传统模型,预测精度显著提高,证明所提方法能够有效处理非平稳性数据,精确获取负荷数据的时间依赖性和空间相关性,提高预测精度。 展开更多
关键词 短期负荷预测 CEEMDAN VMD bilstm FSA 非平稳性 负荷序列潜在空间相关性
在线阅读 下载PDF
基于PSO-GWO-BiLSTM-Attention的换道意图识别预测模型研究
15
作者 陈峥 韦进 +1 位作者 陈博闻 魏福星 《昆明理工大学学报(自然科学版)》 北大核心 2025年第5期172-184,共13页
针对复杂交通场景中车辆换道意图识别准确率不足的问题,提出了一种融合PSO-GWO优化策略与BiLSTM-Attention机制的混合模型.该模型以目标车辆的轨迹序列及其与周围车辆的动态交互特征为输入,利用双向长短期记忆网络(BiLSTM)对时间序列数... 针对复杂交通场景中车辆换道意图识别准确率不足的问题,提出了一种融合PSO-GWO优化策略与BiLSTM-Attention机制的混合模型.该模型以目标车辆的轨迹序列及其与周围车辆的动态交互特征为输入,利用双向长短期记忆网络(BiLSTM)对时间序列数据进行处理,从而挖掘其中的长期依赖特性,并结合注意力机制(Attention)动态调整不同时间步的权重,聚焦关键信息,从而提升识别精度.为了优化模型性能,采用粒子群优化与灰狼优化相结合(PSO-GWO)算法对模型超参数进行多目标寻优,有效解决了传统方法中参数调优困难的问题.将该模型与其他5种模型进行对比,结果表明该模型的意图识别准确率最高,达到94.23%,在换道前2.5 s的识别精度均能达到90%以上,展现了较强的预判能力和鲁棒性,为复杂交通场景下的车辆换道意图识别提供了高效且可靠的解决方案. 展开更多
关键词 换道意图识别 注意力机制 自动驾驶 粒子群算法 双向长短期记忆网络
原文传递
基于CNN-BiLSTM的半监督学习地震波阻抗反演 被引量:1
16
作者 周萍 赵岩 《地球物理学进展》 北大核心 2025年第4期1812-1821,共10页
深度学习凭借其强大的特征提取能力,在各个领域展现出巨大潜力,为解决各种复杂问题提供了新的思路.深度学习模型往往需要大量的标记数据进行训练,但在实际应用中,由于成本原因,获得的测井数据有限,导致训练样本不足.为此,本文提出一种基... 深度学习凭借其强大的特征提取能力,在各个领域展现出巨大潜力,为解决各种复杂问题提供了新的思路.深度学习模型往往需要大量的标记数据进行训练,但在实际应用中,由于成本原因,获得的测井数据有限,导致训练样本不足.为此,本文提出一种基于CNN-BiLSTM的半监督学习地震波阻抗反演方法.采用内插重采样技术对波阻抗进行了增广,然后引入半监督学习策略对增广后数据进行训练,利用未标记数据信息来提高模型泛化能力和性能.Marmousi-2模型测试表明,仅用少量数据进行增广就能取得较好的反演效果,验证了该方法在小样本情况下是有效的. 展开更多
关键词 波阻抗反演 长短记忆神经网络 数据增广 半监督学习
原文传递
基于CEEMDAN-IGWO-CNN-BiLSTM模型的锂电池剩余寿命预测 被引量:1
17
作者 王旭 胡明茂 +6 位作者 宫爱红 龚青山 黄正寅 姜宇 李帅雨 姚政豪 陈锐 《电源技术》 北大核心 2025年第5期991-1005,共15页
针对大规模电池老化数据有限或缺失等问题,提出了一种融合自适应噪声的完全集合经验模态分解、改进灰狼优化算法、卷积神经网络和双向长短期记忆神经网络(CEEMDAN-IGWO-CNN-BiLSTM)的混合预测模型。由于传统的灰狼优化算法(GWO)易陷入... 针对大规模电池老化数据有限或缺失等问题,提出了一种融合自适应噪声的完全集合经验模态分解、改进灰狼优化算法、卷积神经网络和双向长短期记忆神经网络(CEEMDAN-IGWO-CNN-BiLSTM)的混合预测模型。由于传统的灰狼优化算法(GWO)易陷入局部最优且收敛速度较慢,因此在GWO的基础上引入了Tent混沌映射、基于维度学习的狩猎策略和Taguchi方法,对GWO进行多策略改进。利用CEEMDAN将电池容量数据分解为本征模态分量和残差分量;利用CNN提取数据特征,并将其输入经过IGWO寻找到最优参数的BiLSTM中进行预测;采用公共数据集进行验证并与其他模型进行对比,均方根误差和平均绝对误差分别降低了17%和30%,决定系数提高了4%。证明了本模型具有良好的精度和泛化能力。 展开更多
关键词 锂离子电池 IGWO CEEMDAN bilstm 剩余使用寿命预测
在线阅读 下载PDF
基于主题条件CNN-BiLSTM的旋律自动生成方法
18
作者 曹西征 张航 李伟 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期135-142,共8页
为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲... 为了有效地生成结构化的旋律,提出了一种基于主题条件CNN-BiLSTM的旋律自动生成方法.将旋律表示为钢琴卷帘窗的形式,使用定长、变长相结合的方法分割钢琴卷帘窗;通过Ward聚类算法对钢琴卷帘窗片段进行聚类分析,将获取的最大簇作为歌曲的旋律主题;以旋律主题作为条件使用基于CNN-BiLSTM结构的模型进行旋律生成,其上半部分CNN可以有效地提取钢琴卷帘窗中所包含时间和音高之间的信息,下半部分利用LSTM和BiLSTM更好地捕捉到序列中的时序信息.结果表明,相较于现有的MidiNet模型,使用的旋律主题条件CNN-BiLSTM模型在准确率、归一化KL散度方面分别高出23%和0.17,生成的乐曲在连贯性和情感表达方面也优于传统的模型. 展开更多
关键词 音乐生成 自动作曲 CNN-bilstm 旋律主题提取 聚类
在线阅读 下载PDF
基于特征选择与BiLSTM多变量回归预测的磨煤机故障预警研究 被引量:2
19
作者 罗云 李战国 +5 位作者 付陇霞 王道谊 张新中 李耀华 程亮 江霞 《动力工程学报》 北大核心 2025年第5期724-732,共9页
为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压... 为解决火电设备多参数耦合、渐变性故障诊断困难的问题,提出了一种基于套索(LASSO)回归特征选择与双向长短期记忆(BiLSTM)网络多变量回归预测的故障预警方法。以某1 000 MW机组磨煤机为研究对象,选取磨煤机电流、出口压力、出入口差压作为表征堵磨故障的特征参数,采用LASSO回归选择特征变量,基于BiLSTM算法建立多变量回归预测模型;根据堵磨时特征参数的变化机理与模型预测值构建堵磨故障指数,最后利用核密度估计方法计算预警阈值,实现了堵磨故障预警。通过实际数据分析表明:磨煤机正常状态时,BiLSTM多变量回归预测模型的平均相对误差为1.13%,相比传统的误差反向传播(BP)神经网络和支持向量机回归(SVR)模型具有更高的精度和预测参数变化趋势的能力;磨煤机异常状态时,相比成熟的多元状态估计技术(MSET)算法模型能更早地发现磨煤机运行的异常状态,实现磨煤机变工况下故障早期预警。 展开更多
关键词 磨煤机 LASSO回归 bilstm多变量回归 预测模型 堵磨 故障指数
在线阅读 下载PDF
基于CNN和BiLSTM的电缆故障自动化定位技术
20
作者 郝磊 《自动化与仪表》 2025年第3期118-121,161,共5页
针对传统的电缆故障诊断难以准确分类和定位的问题,该文在卷积神经网络的基础上引入双向长短时记忆网络,从电缆故障信号中提取关键特征,并利用这些特征对故障类型进行分类和定位,从而提高电缆故障检测的准确性和效率。参数选择实验结果... 针对传统的电缆故障诊断难以准确分类和定位的问题,该文在卷积神经网络的基础上引入双向长短时记忆网络,从电缆故障信号中提取关键特征,并利用这些特征对故障类型进行分类和定位,从而提高电缆故障检测的准确性和效率。参数选择实验结果显示,学习率设为0.01和双向长短时记忆网络层数为4层时模型性能最佳。不同电缆故障定位结果显示,低阻故障的误差最小,在2000 m的距离上,误差仅为5.35 m。实验结果表明,研究建立的基于卷积神经网络-双向长短时记忆网络算法的电缆故障自动化定位模型,有助于提升电力系统的故障应对能力,为现代故障诊断技术的智能化与自动化发展提供参考。 展开更多
关键词 卷积神经网络 双向长短时记忆网络 电缆故障 自动化定位 特征提取
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部