期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Self-supporting NiFe LDH-MoS_(x) integrated electrode for highly efficient water splitting at the industrial electrolysis conditions 被引量:4
1
作者 Han Zhang Guoqiang Shen +3 位作者 Xinying Liu Bo Ning Chengxiang Shi Lun Pan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1732-1741,共10页
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for w... Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2)under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2)under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2)for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2)at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis. 展开更多
关键词 Self-supporting integrated electrode NiFe LDH Electronic structure modulation Industrial alkaline water electrolysis membrane-electrode assembly
在线阅读 下载PDF
Optimistic performance of carbon-free hydrazine fuel cells based on controlled electrode structure and water management
2
作者 Hongsun Hwang Sujik Hong +4 位作者 Do-Hyeong Kim Moon-Sung Kang Jin-Soo Park Sunghyun Uhm Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期175-181,共7页
In this study, we first attempted to discover the optimal configuration of membrane-electrode assemblies(MEAs) used to achieve a high performance of direct hydrazine fuel cells(DHFCs). We have investigated the effect ... In this study, we first attempted to discover the optimal configuration of membrane-electrode assemblies(MEAs) used to achieve a high performance of direct hydrazine fuel cells(DHFCs). We have investigated the effect of water management and the electrode thickness on the performance of DHFCs, depending on the hydrophobicity of the gas diffusion layers in the cathode and the catalyst loading in the anode with the carbon-supported Ni, synthesized by a polyol process. With the optimal water management and electrode thickness, the MEA constructed using the as-prepared Ni/C anode catalyst containing the metallic and low oxidative state and ultra-low Pt loading cathode reduced the ohmic resistance and mass transfer limitation in the current-voltage curves observed for the alkaline DHFC, achieving an impressive power performance over 500 mW cm^(–2). 展开更多
关键词 Fuel cell HYDRAZINE Alkaline media membrane-electrode assembly
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部