Membrane-assisted antisolvent crystallization(MAAC)is a separation process that allows for precise regulation of the crystallization process in pharmaceutical,finechemical engineering,energy chemistry,etc.After decade...Membrane-assisted antisolvent crystallization(MAAC)is a separation process that allows for precise regulation of the crystallization process in pharmaceutical,finechemical engineering,energy chemistry,etc.After decades of development,the current MAAC engineering lacks highly robust specialized instruments,which limits the further industrial application of the MAAC process.Herein,to guide the design and optimization of the advanced MAAC instrument(DUT-iMC),we developed a parameter evaluation strategy based on cold model experiments.This approach utilizes the average particle size variation rate and the counts variation rate to characterize crystal size changes.The layout of the internal membrane module in DUT-iMC and the arrangement of the conveying pipeline were optimized.This improvement enhanced particle conveying characteristics,promoting more efficienttransport and circulation within the module.The advanced MAAC instrument substantially automates the production process,and the internal probes accurately monitor and record process variables,allowing for precise regulation of crystal size and morphology.The optimal operating range was expanded by 150%compared to the laboratory instrument.The range of shell side flow rate options increased by 50%,and the production time can be shortened by up to 30%.This paper provides ideas and guidance for the industrialization of MAAC processes and the development of related instruments.展开更多
基金financial contribution from the National Natural Science Foundation of China(22021005,22378041)Supporting Plan of Scientificand Technology Innovative Talents in Dalian(2023RJ001)Central Guidance on Local Science and Technology Development Fund of Liaoning Province(2025040052-JH6/1011)。
文摘Membrane-assisted antisolvent crystallization(MAAC)is a separation process that allows for precise regulation of the crystallization process in pharmaceutical,finechemical engineering,energy chemistry,etc.After decades of development,the current MAAC engineering lacks highly robust specialized instruments,which limits the further industrial application of the MAAC process.Herein,to guide the design and optimization of the advanced MAAC instrument(DUT-iMC),we developed a parameter evaluation strategy based on cold model experiments.This approach utilizes the average particle size variation rate and the counts variation rate to characterize crystal size changes.The layout of the internal membrane module in DUT-iMC and the arrangement of the conveying pipeline were optimized.This improvement enhanced particle conveying characteristics,promoting more efficienttransport and circulation within the module.The advanced MAAC instrument substantially automates the production process,and the internal probes accurately monitor and record process variables,allowing for precise regulation of crystal size and morphology.The optimal operating range was expanded by 150%compared to the laboratory instrument.The range of shell side flow rate options increased by 50%,and the production time can be shortened by up to 30%.This paper provides ideas and guidance for the industrialization of MAAC processes and the development of related instruments.