The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicat...The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.展开更多
A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement wit...A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.展开更多
The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and D...The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.展开更多
The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(...The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.展开更多
Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots o...Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi...Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma.Emdogain®(EMD)is widely used in periodontal therapy due to its ability to promote repair....The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma.Emdogain®(EMD)is widely used in periodontal therapy due to its ability to promote repair.Despite substantial research,the cellular and molecular mechanisms underlying EMD’s effects,particularly at the single-cell resolution,remain incompletely understood.This study established a delayed tooth replantation model in rats to investigate these aspects.Tooth loss rate and degree of loosening were evaluated at 4 and 8 weeks.Micro-CT,HE staining,TRAP staining,and immunofluorescence staining were evaluated to assess EMD’s efficacy.Single-cell sequencing analyses generated single-cell maps that explored enrichment pathways,cell communication,and potential repair mechanisms.Findings indicated that EMD could reduce the rate of tooth loss,promote periodontal membrane repair,and reduce root and bone resorption.Single-cell analysis revealed that EMD promotes the importance of Vtn+fibroblasts,enhancing matrix and tissue regeneration functions.Additionally,EMD stimulated osteogenic pathways,reduced osteoclastic activity,and promoted angiogenesis-related pathways,particularly bone-related H-type vessel expression in endothelial cells.Gene modules associated with angiogenesis,osteogenesis,and odontoblast differentiation were identified,suggesting EMD might facilitate osteogenesis and odontoblast differentiation by upregulating endothelium-related genes.Immune cell analysis indicated that EMD did not elicit a significant immune response.Cell communication analysis suggested that EMD fostered pro-regenerative networks driven by interactions between mesenchymal stem cells,fibroblasts,and endothelial cells.In conclusion,EMD proves to be an effective root surface therapy agent that supports the restoration of delayed replantation teeth.展开更多
Membrane fouling is the primary resistance to the continuous production of stirred membrane reactors.This work presents a laser-enhanced high-magnification telecentric imaging system(LEHTIS),which uses a high-magnific...Membrane fouling is the primary resistance to the continuous production of stirred membrane reactors.This work presents a laser-enhanced high-magnification telecentric imaging system(LEHTIS),which uses a high-magnification telecentric lens and laser-enhanced illumination to invasively capture the motion of particles on the membrane surface or near the membrane.The problems of working distance and particle interference in the stirred membrane reactor are solved to achieve the purpose of in-situ monitoring of membrane fouling.This method is suitable for high flow rates,high solid holdup,and small particle size systems,and the dynamic motion and accumulation of particles are preliminarily analyzed.It shows that the accumulation and desorption of particles on the membrane surface are related to the physical properties of the membrane surface.There is an intermittent rotational movement in the flow field near the membrane,and it tends to stabilize over time.The filtration process can be assessed by monitoring changes in the overall velocity and acceleration of particles near the membrane.The analysis of forces acting on individual particles is compared and validated with the force balance model to correct and accurately apply it to stirred membrane reactors.The development of LEHTIS provides an effective tool for in-situ monitoring of membrane fouling and optimizing the stirred membrane reactors for industrial applications.展开更多
Neuroinflammation,α-synuclein pathology and dopaminergic cell loss are the hallmarks of Parkinson’s disease(PD),an incurable movement disorder.The presence of the blood-brain barrier(BBB)impedes the delivery of ther...Neuroinflammation,α-synuclein pathology and dopaminergic cell loss are the hallmarks of Parkinson’s disease(PD),an incurable movement disorder.The presence of the blood-brain barrier(BBB)impedes the delivery of therapeutics and makes the design of drug-targeting delivery vehicles challenging.Nanomedicine is designed and has significantly impacted the scientific community.Over the last few decades,to address the shortcomings of synthetic nanoparticles,a new approach has emerged that mimic the physiological environment.Cell membrane-coated nanoparticles have been developed to interact with the physiological environment,enhance central nervous system drug delivery and mask toxic effects.Cell membranes are multifunctional,biocompatible platforms with the potential for surface modification and targeted delivery design.A synchronous design of cell membrane and nanoparticles is required for the cell membrane-based biomimetics,which can improve the BBB recognition and transport.This review summarizes the challenges in drug delivery and how cell membrane-coated nanoparticles can overcome them.Moreover,major cell membranes used in biomedical applications are discussed with a focus on PD.展开更多
A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated ...A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated the serious corrosion problem of carbon steel on the evaporator of hot film coupled seawater desalination system in harsh marine environment.The morphologies and compositions of the coatings were analyzed,revealing the influence of electrodeposition time on their performance.The micro-nano copper structure formed by electrodeposition significantly improved the deposition effect of carbon layer.Additionally,experiments with seawater solution contact angle tests indicated that electrodeposition transformed the surface properties from hydrophilic to hydrophobic,effectively inhibiting the diffusion of corrosive medium into the interior of the substrate.Through polarization curves,electrochemical impedance spectroscopy,and other analyses,it was demonstrated that the hydrophobic coating significantly improves the corrosion resistance of carbon steel substrates in seawater environments,surpassing the performance of traditional duplex steel.展开更多
Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of p...Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of photocatalysts or membrane materials to improve their catalytic and filtration performance,the complex structures and interface mechanisms,as well as insufficient light utilization,are still often overlooked,limiting the overall performance improvement of photocatalytic membranes.This work provides an overview of enhancement strategies involving restricted area effects,external fields,such as mechanical,magnetic,thermal,and electrical fields,as well as coupling techniques with advanced oxidation processes(e.g.,O_(3),Fenton,and persulfate oxidation)for dual enhancement of photocatalysts and membranes.In addition,the synthesis method of photocatalytic membranes and the influence of factors,such as light source type,frequency,and relative position on photocatalytic membrane performance were also studied.Finally,economic feasibility and pollutant removal performance were further evaluated to determine the promising enhancement strategies,paving the way for more efficient and scalable applications of photocatalytic membranes.展开更多
Membrane fouling is a persistent challenge in membrane-based technologies,significantly impacting efficiency,operational costs,and system lifespan in applications like water treatment,desalination,and industrial proce...Membrane fouling is a persistent challenge in membrane-based technologies,significantly impacting efficiency,operational costs,and system lifespan in applications like water treatment,desalination,and industrial processing.Foul-ing,caused by the accumulation of particulates,organic compounds,and microorganisms,leads to reduced permeability,increased energy demands,and frequent maintenance.Traditional fouling control approaches,relying on empirical models and reactive strategies,often fail to address these issues efficiently.In this context,artificial intelligence(AI)and machine learning(ML)have emerged as innovative tools offering predictive and proactive solutions for fouling man-agement.By utilizing historical and real-time data,AI/ML techniques such as artificial neural networks,support vector machines,and ensemble models enable accurate prediction of fouling onset,identification of fouling mechanisms,and optimization of control measures.This review provides a detailed examination of the integration of AI/ML in membrane fouling prediction and mitigation,discussing advanced algorithms,the role of sensor-based monitoring,and the importance of robust datasets in enhancing predictive accuracy.Case studies highlighting successful AI/ML applications across various membrane processes are presented,demonstrating their transformative potential in improving system performance.Emerging trends,such as hybrid modeling and IoT-enabled smart systems,are explored,alongside a criti-cal analysis of research gaps and opportunities.This review emphasizes AI/ML as a cornerstone for sustainable,cost-effective membrane operations.展开更多
Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of...Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.展开更多
In this study,a gravity-driven membrane(GDM)filtration system and hydroponic system(cultivating basil and lettuce)were combined for nutrient recovery from primary municipal wastewater.The GDM system was optimized by i...In this study,a gravity-driven membrane(GDM)filtration system and hydroponic system(cultivating basil and lettuce)were combined for nutrient recovery from primary municipal wastewater.The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min(∼15 hr per 3-4 days),resulting in a∼52%reduction of irreversible fouling.However,the total fouling was not alleviated,and the water productivity remained comparable.The GDM-filtrated water was then delivered to hydroponic systems,and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated,with fertilizer-and tap water-based hydroponic systems and soil cultivation sys-tem(with tap water)for comparison.It was found that(i)the hydroponic system under batchmode facilitated to promote vegetable growth with higher nutrient uptake rates com-pared to that under flow-through feed mode;(ii)a shift in nutrient levels in the hydroponic system could impact plant growth(such as plant height and leaf length),especially in the early stages.Nevertheless,the plants cultivated with the GDM-treated water had compara-ble growth profiles to those with commercial fertilizer or in soils.Furthermore,the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer.Especially,com-pared to the lettuce,the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk,when the treated water was employed for the hydroponic system.展开更多
In the physiological environment, nanoparticles(NPs) interact with proteins to form a protein-rich layer on the surface which is called "protein corona". Understanding and analyzing the formation process of ...In the physiological environment, nanoparticles(NPs) interact with proteins to form a protein-rich layer on the surface which is called "protein corona". Understanding and analyzing the formation process of protein corona and protein corona-nanoparticles is of great significance for biological related nano research. Many separation techniques have been used to analyze the composition of protein corona, but in situ analysis of protein corona is still absent. With the development of detection technology, sum frequency generation(SFG) is an effective instrument to analyze the surface protein structure and dynamic changes of protein corona in situ. In this work the molecular mechanism and surface structure effect of the interaction between nanoparticles with surface protein corona(S-NPP) and phospholipid membrane were studied. When S-NPP interacts with phospholipid membrane, the bond affinity network formed by the binding water can stabilize S-NPP around the lipid bilayer. In this process, S-NPP can be found wrapped in the hydration shell. This ultimately leads to a more moderate interaction between particles and phospholipid membrane.展开更多
The determination of stress distribution is important for the safe use of membrane structures in practical engineering,which is difficult to be obtained by existing measurement methods and analysis methods.This paper ...The determination of stress distribution is important for the safe use of membrane structures in practical engineering,which is difficult to be obtained by existing measurement methods and analysis methods.This paper proposes a rigid-membrane method to determine the stress distribution of the membrane,which expands the stiffness of the membrane,applies the load of the membrane in equilibrium to the membrane shape of the equilibrium state,and performs nonlinear finite element analysis.The rigid-membrane method inversely acquires the stress distribution of the membrane based only on the shape and load distribution in equilibrium obtained from the numerical simulation of a membrane structure under water loads,and determines the modulus magnitude and mesh size required to rigidize the membrane.The accuracy of the rigid-membrane method is verified by the small differences between the stress distributions obtained from the proposed method and numerical simulations.The equilibrium membrane shape in the actual project can be scanned and reconstructed by the laser scanner system without any pre-processing,and the load is determined by the water level,internal pressure,etc.Based on the actual membrane shape and water load distribution,the rigid-membrane method determines the real stress distribution of the membrane in the test of flat membrane subjected to ponding water,which verifies that the rigid-membrane method is a practical method to determine the stress distribution only by the membrane shape and external load distribution.展开更多
Tumor treatment remains a significant medical challenge,with many traditional therapies causing notable side effects.Recent research has led to the development of immunotherapy,which offers numerous advantages.Bacteri...Tumor treatment remains a significant medical challenge,with many traditional therapies causing notable side effects.Recent research has led to the development of immunotherapy,which offers numerous advantages.Bacteria inherently possess motility,allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment,thus influencing the efficacy of immunotherapy.Bacterial outer membrane vesicles(OMVs)secreted by gram-negative bacteria are nanoscale lipid bilayer structures rich in bacterial antigens,pathogen-associated molecular patterns(PAMPs),various proteins,and vesicle structures.These features allow OMVs to stimulate immune system activation,generate immune responses,and serve as efficient drug delivery vehicles.This dual capability enhances the effectiveness of immunotherapy combined with chemotherapy or phototherapy,thereby improving anticancer drug efficacy.Current research has concentrated on engineering OMVs to enhance production yield,minimize cytotoxicity,and improve the safety and efficacy of treatments.Consequently,OMVs hold great promise for applications in tumor immunotherapy,tumor vaccine development,and drug delivery.This article provides an overview of the structural composition and immune mechanisms of OMVs,details various OMVs modification strategies,and reviews the progress in using OMVs for tumor treatment and their anti-tumor mechanisms.Additionally,it discusses the challenges faced in translating OMV-based anti-tumor therapies into clinical practice,aiming to provide a comprehensive understanding of OMVs'potential for in-depth research and clinical application.展开更多
文摘The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.
文摘A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.
基金Project supported by the National Natural Science Foundation of China (90401009)the Action Plan for the Development of Western China of the Chinese Academy of Sciences (KZCX2-XB2-13)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.
基金Supported by the National Natural Science Foundation of China(No90401009)the Natural Science Foundation of Shaanxi Province, China(NoSJ08B16)+1 种基金the Science Research Program of Education Department of Shaanxi Province, China (No06JK215)the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology, China (No602-210805)
文摘The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.
文摘Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金National Key R&D Program of China,Grant/Award Number:2021YFA1500900Basic and Applied Basic Research Foundation of Guangdong Province-Regional Joint Fund Project,Grant/Award Number:2021B1515120024+9 种基金Science Funds of the Education Office of Jiangxi Province,Grant/Award Number:GJJ2201324Science Funds of Jiangxi Province,Grant/Award Numbers:20242BAB25168,20224BAB213018Doctoral Research Start-up Funds of JXSTNU,Grant/Award Number:2022BSQD05China Postdoctoral Science Foundation,Grant/Award Number:2023M741121National Natural Science Foundation of China,Grant/Award Number:22172047Provincial Natural Science Foundation of Hunan,Grant/Award Number:2021JJ30089Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20210324122209025Changsha Municipal Natural Science Foundation,Grant/Award Number:kq2107008Hunan Province of Huxiang Talent project,Grant/Award Number:2023rc3118Natural Science Foundation of Hunan Province,Grant/Award Number:2022JJ10006.
文摘Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金the National Natural Science Foundation of China(U22A20314,82470988,32070826)National Key R&D of Program of China(2022YFC2504201)+2 种基金Outstanding Youth Fund of Chongqing Natural Science Foundation(CSTB2023NSCQJQX0006)Science and Technology Research Project of Chongqing Education Commission(KJQN202200471)CQMU Program for Youth Innovation in Future Medicine(W0075).
文摘The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma.Emdogain®(EMD)is widely used in periodontal therapy due to its ability to promote repair.Despite substantial research,the cellular and molecular mechanisms underlying EMD’s effects,particularly at the single-cell resolution,remain incompletely understood.This study established a delayed tooth replantation model in rats to investigate these aspects.Tooth loss rate and degree of loosening were evaluated at 4 and 8 weeks.Micro-CT,HE staining,TRAP staining,and immunofluorescence staining were evaluated to assess EMD’s efficacy.Single-cell sequencing analyses generated single-cell maps that explored enrichment pathways,cell communication,and potential repair mechanisms.Findings indicated that EMD could reduce the rate of tooth loss,promote periodontal membrane repair,and reduce root and bone resorption.Single-cell analysis revealed that EMD promotes the importance of Vtn+fibroblasts,enhancing matrix and tissue regeneration functions.Additionally,EMD stimulated osteogenic pathways,reduced osteoclastic activity,and promoted angiogenesis-related pathways,particularly bone-related H-type vessel expression in endothelial cells.Gene modules associated with angiogenesis,osteogenesis,and odontoblast differentiation were identified,suggesting EMD might facilitate osteogenesis and odontoblast differentiation by upregulating endothelium-related genes.Immune cell analysis indicated that EMD did not elicit a significant immune response.Cell communication analysis suggested that EMD fostered pro-regenerative networks driven by interactions between mesenchymal stem cells,fibroblasts,and endothelial cells.In conclusion,EMD proves to be an effective root surface therapy agent that supports the restoration of delayed replantation teeth.
基金Financial support from the National Key Research and Development Program(2022YFB3504000)the National Natural Science Foundation of China(22421003,22478391,22178345)the Youth Innovation Promotion Association CAS(Y2023012,2022045,2023052)。
文摘Membrane fouling is the primary resistance to the continuous production of stirred membrane reactors.This work presents a laser-enhanced high-magnification telecentric imaging system(LEHTIS),which uses a high-magnification telecentric lens and laser-enhanced illumination to invasively capture the motion of particles on the membrane surface or near the membrane.The problems of working distance and particle interference in the stirred membrane reactor are solved to achieve the purpose of in-situ monitoring of membrane fouling.This method is suitable for high flow rates,high solid holdup,and small particle size systems,and the dynamic motion and accumulation of particles are preliminarily analyzed.It shows that the accumulation and desorption of particles on the membrane surface are related to the physical properties of the membrane surface.There is an intermittent rotational movement in the flow field near the membrane,and it tends to stabilize over time.The filtration process can be assessed by monitoring changes in the overall velocity and acceleration of particles near the membrane.The analysis of forces acting on individual particles is compared and validated with the force balance model to correct and accurately apply it to stirred membrane reactors.The development of LEHTIS provides an effective tool for in-situ monitoring of membrane fouling and optimizing the stirred membrane reactors for industrial applications.
基金Department of Pharmaceuticals,Ministry of Chemicals and Fertilizers,Centre of Excellence(CoE),NDDS,NIPER-Raebareli.Communication Number/737。
文摘Neuroinflammation,α-synuclein pathology and dopaminergic cell loss are the hallmarks of Parkinson’s disease(PD),an incurable movement disorder.The presence of the blood-brain barrier(BBB)impedes the delivery of therapeutics and makes the design of drug-targeting delivery vehicles challenging.Nanomedicine is designed and has significantly impacted the scientific community.Over the last few decades,to address the shortcomings of synthetic nanoparticles,a new approach has emerged that mimic the physiological environment.Cell membrane-coated nanoparticles have been developed to interact with the physiological environment,enhance central nervous system drug delivery and mask toxic effects.Cell membranes are multifunctional,biocompatible platforms with the potential for surface modification and targeted delivery design.A synchronous design of cell membrane and nanoparticles is required for the cell membrane-based biomimetics,which can improve the BBB recognition and transport.This review summarizes the challenges in drug delivery and how cell membrane-coated nanoparticles can overcome them.Moreover,major cell membranes used in biomedical applications are discussed with a focus on PD.
基金supported by the National Natural Science Foundation of China(No.51974022).
文摘A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated the serious corrosion problem of carbon steel on the evaporator of hot film coupled seawater desalination system in harsh marine environment.The morphologies and compositions of the coatings were analyzed,revealing the influence of electrodeposition time on their performance.The micro-nano copper structure formed by electrodeposition significantly improved the deposition effect of carbon layer.Additionally,experiments with seawater solution contact angle tests indicated that electrodeposition transformed the surface properties from hydrophilic to hydrophobic,effectively inhibiting the diffusion of corrosive medium into the interior of the substrate.Through polarization curves,electrochemical impedance spectroscopy,and other analyses,it was demonstrated that the hydrophobic coating significantly improves the corrosion resistance of carbon steel substrates in seawater environments,surpassing the performance of traditional duplex steel.
基金supported by the BRICS STI Framework Programme(No.52261145703)the Higher Education Discipline Innovation Project(National 111 Project,No.B16016)the Guangxi Key Research and Development Plan Project(AB24010117).
文摘Photocatalytic membranes hold significant potential for promoting pollutant degradation and reducing membrane fouling in filtration systems.Although extensive research has been conducted on the independent design of photocatalysts or membrane materials to improve their catalytic and filtration performance,the complex structures and interface mechanisms,as well as insufficient light utilization,are still often overlooked,limiting the overall performance improvement of photocatalytic membranes.This work provides an overview of enhancement strategies involving restricted area effects,external fields,such as mechanical,magnetic,thermal,and electrical fields,as well as coupling techniques with advanced oxidation processes(e.g.,O_(3),Fenton,and persulfate oxidation)for dual enhancement of photocatalysts and membranes.In addition,the synthesis method of photocatalytic membranes and the influence of factors,such as light source type,frequency,and relative position on photocatalytic membrane performance were also studied.Finally,economic feasibility and pollutant removal performance were further evaluated to determine the promising enhancement strategies,paving the way for more efficient and scalable applications of photocatalytic membranes.
文摘Membrane fouling is a persistent challenge in membrane-based technologies,significantly impacting efficiency,operational costs,and system lifespan in applications like water treatment,desalination,and industrial processing.Foul-ing,caused by the accumulation of particulates,organic compounds,and microorganisms,leads to reduced permeability,increased energy demands,and frequent maintenance.Traditional fouling control approaches,relying on empirical models and reactive strategies,often fail to address these issues efficiently.In this context,artificial intelligence(AI)and machine learning(ML)have emerged as innovative tools offering predictive and proactive solutions for fouling man-agement.By utilizing historical and real-time data,AI/ML techniques such as artificial neural networks,support vector machines,and ensemble models enable accurate prediction of fouling onset,identification of fouling mechanisms,and optimization of control measures.This review provides a detailed examination of the integration of AI/ML in membrane fouling prediction and mitigation,discussing advanced algorithms,the role of sensor-based monitoring,and the importance of robust datasets in enhancing predictive accuracy.Case studies highlighting successful AI/ML applications across various membrane processes are presented,demonstrating their transformative potential in improving system performance.Emerging trends,such as hybrid modeling and IoT-enabled smart systems,are explored,alongside a criti-cal analysis of research gaps and opportunities.This review emphasizes AI/ML as a cornerstone for sustainable,cost-effective membrane operations.
基金supported by the National Natural Science Foundation of China(Nos.52200111,51978651,and 51878049)the China Postdoctoral Science Foundation(No.2021M703407)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences(No.21Z01ESPCR)。
文摘Membrane distillation(MD)is a promising alternative desalination technology,but the hydrophobic membrane cannot intercept volatile organic compounds(VOCs),resulting in aggravation in the quality of permeate.In term of this,electro-Fenton(EF)was coupled with sweeping gas membrane distillation(SGMD)in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface,so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate.During the so-called EF-MD process,an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface.It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L.Effective interceptions can be achieved in a wide temperature range,even though the permeate flux of phenol was also intensified.The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions,which endowed the long-term stability of the system.This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.
文摘In this study,a gravity-driven membrane(GDM)filtration system and hydroponic system(cultivating basil and lettuce)were combined for nutrient recovery from primary municipal wastewater.The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min(∼15 hr per 3-4 days),resulting in a∼52%reduction of irreversible fouling.However,the total fouling was not alleviated,and the water productivity remained comparable.The GDM-filtrated water was then delivered to hydroponic systems,and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated,with fertilizer-and tap water-based hydroponic systems and soil cultivation sys-tem(with tap water)for comparison.It was found that(i)the hydroponic system under batchmode facilitated to promote vegetable growth with higher nutrient uptake rates com-pared to that under flow-through feed mode;(ii)a shift in nutrient levels in the hydroponic system could impact plant growth(such as plant height and leaf length),especially in the early stages.Nevertheless,the plants cultivated with the GDM-treated water had compara-ble growth profiles to those with commercial fertilizer or in soils.Furthermore,the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer.Especially,com-pared to the lettuce,the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk,when the treated water was employed for the hydroponic system.
基金the Southeast University and Nanjing Medical University Cooperation ProjectScene Ray Co., Ltd. for the financial supportfounded by the National Key Reserch and Development Program of China (No.2017YFA0205304)。
文摘In the physiological environment, nanoparticles(NPs) interact with proteins to form a protein-rich layer on the surface which is called "protein corona". Understanding and analyzing the formation process of protein corona and protein corona-nanoparticles is of great significance for biological related nano research. Many separation techniques have been used to analyze the composition of protein corona, but in situ analysis of protein corona is still absent. With the development of detection technology, sum frequency generation(SFG) is an effective instrument to analyze the surface protein structure and dynamic changes of protein corona in situ. In this work the molecular mechanism and surface structure effect of the interaction between nanoparticles with surface protein corona(S-NPP) and phospholipid membrane were studied. When S-NPP interacts with phospholipid membrane, the bond affinity network formed by the binding water can stabilize S-NPP around the lipid bilayer. In this process, S-NPP can be found wrapped in the hydration shell. This ultimately leads to a more moderate interaction between particles and phospholipid membrane.
基金the National Natural Science Foundation of China(No.51978395)。
文摘The determination of stress distribution is important for the safe use of membrane structures in practical engineering,which is difficult to be obtained by existing measurement methods and analysis methods.This paper proposes a rigid-membrane method to determine the stress distribution of the membrane,which expands the stiffness of the membrane,applies the load of the membrane in equilibrium to the membrane shape of the equilibrium state,and performs nonlinear finite element analysis.The rigid-membrane method inversely acquires the stress distribution of the membrane based only on the shape and load distribution in equilibrium obtained from the numerical simulation of a membrane structure under water loads,and determines the modulus magnitude and mesh size required to rigidize the membrane.The accuracy of the rigid-membrane method is verified by the small differences between the stress distributions obtained from the proposed method and numerical simulations.The equilibrium membrane shape in the actual project can be scanned and reconstructed by the laser scanner system without any pre-processing,and the load is determined by the water level,internal pressure,etc.Based on the actual membrane shape and water load distribution,the rigid-membrane method determines the real stress distribution of the membrane in the test of flat membrane subjected to ponding water,which verifies that the rigid-membrane method is a practical method to determine the stress distribution only by the membrane shape and external load distribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.:52122317 and 22175120)the Science and Technology Foundation of Shenzhen City,China(Grant Nos.:JCYJ20210324142211031,RCYX20200714114525101,and RCYX20220809130438001)+5 种基金the Pearl River Talent Recruitment Program,China(Program No.:2019QN01Y103)the Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University,China(Grant No.:2023YG021)the Research Team Cultivation Program of Shenzhen University,China(Program No.:2023QNT003)the Jiaxing Public Welfare Research Program Project,China(Program No.:2023AY11018)the project supported by Scientific Research Fund of Zhejiang Provincial Education Department,China(Project No.:Y202352075)Arshad Khan thanks the research support by King Abdullah International Medical Research Center(KAIMRC),Saudi Arabia through start up grant(Grant No.:SF23/006/R).
文摘Tumor treatment remains a significant medical challenge,with many traditional therapies causing notable side effects.Recent research has led to the development of immunotherapy,which offers numerous advantages.Bacteria inherently possess motility,allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment,thus influencing the efficacy of immunotherapy.Bacterial outer membrane vesicles(OMVs)secreted by gram-negative bacteria are nanoscale lipid bilayer structures rich in bacterial antigens,pathogen-associated molecular patterns(PAMPs),various proteins,and vesicle structures.These features allow OMVs to stimulate immune system activation,generate immune responses,and serve as efficient drug delivery vehicles.This dual capability enhances the effectiveness of immunotherapy combined with chemotherapy or phototherapy,thereby improving anticancer drug efficacy.Current research has concentrated on engineering OMVs to enhance production yield,minimize cytotoxicity,and improve the safety and efficacy of treatments.Consequently,OMVs hold great promise for applications in tumor immunotherapy,tumor vaccine development,and drug delivery.This article provides an overview of the structural composition and immune mechanisms of OMVs,details various OMVs modification strategies,and reviews the progress in using OMVs for tumor treatment and their anti-tumor mechanisms.Additionally,it discusses the challenges faced in translating OMV-based anti-tumor therapies into clinical practice,aiming to provide a comprehensive understanding of OMVs'potential for in-depth research and clinical application.