Opaque polyploid cells capable of forming megamitochondria are a constant <span style="font-family:Verdana;">feature in colonies of Ishikawa endometrial epithelia, accounting for ap</span><spa...Opaque polyploid cells capable of forming megamitochondria are a constant <span style="font-family:Verdana;">feature in colonies of Ishikawa endometrial epithelia, accounting for ap</span><span style="font-family:Verdana;">proximately 5</span><span style="font-family:Verdana;">% </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">10% of the cells. Opaque cells appear to communicate with other </span><span style="font-family:Verdana;">opaque cells via membrane extensions and with other cells in a colony by </span><span style="font-family:Verdana;">extra</span></span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">cellular vesicles. Opaque cells form first as rectangular structures, somewhat larger than surrounding monolayer cells. The cells eventually round up, re</span><span style="font-family:Verdana;">maining in the colony for 20 or more hours before detaching. The most </span><span style="font-family:Verdana;">un</span><span style="font-family:Verdana;">usual characteristic of Ishikawa opaque cells is their capacity to form mitonucleons, megamitochondria that surround aggregated chromatin. This</span><span style="font-family:Verdana;"> paper reviews evidence that adaptations resulting in megamitochondria i</span><span style="font-family:Verdana;">nclude a loss of the capacity for oxidative phosphorylation leaving the adapted </span><span style="font-family:Verdana;">megamitochondria reliant on metabolism such as reductive carboxylation.</span></span>展开更多
文摘Opaque polyploid cells capable of forming megamitochondria are a constant <span style="font-family:Verdana;">feature in colonies of Ishikawa endometrial epithelia, accounting for ap</span><span style="font-family:Verdana;">proximately 5</span><span style="font-family:Verdana;">% </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">10% of the cells. Opaque cells appear to communicate with other </span><span style="font-family:Verdana;">opaque cells via membrane extensions and with other cells in a colony by </span><span style="font-family:Verdana;">extra</span></span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">cellular vesicles. Opaque cells form first as rectangular structures, somewhat larger than surrounding monolayer cells. The cells eventually round up, re</span><span style="font-family:Verdana;">maining in the colony for 20 or more hours before detaching. The most </span><span style="font-family:Verdana;">un</span><span style="font-family:Verdana;">usual characteristic of Ishikawa opaque cells is their capacity to form mitonucleons, megamitochondria that surround aggregated chromatin. This</span><span style="font-family:Verdana;"> paper reviews evidence that adaptations resulting in megamitochondria i</span><span style="font-family:Verdana;">nclude a loss of the capacity for oxidative phosphorylation leaving the adapted </span><span style="font-family:Verdana;">megamitochondria reliant on metabolism such as reductive carboxylation.</span></span>