The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute ...The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.展开更多
Based on multi-physical field coupling numerical simulation method,magnetic field distribution,melt flow,and heat transfer behavior of aΦ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting(D...Based on multi-physical field coupling numerical simulation method,magnetic field distribution,melt flow,and heat transfer behavior of aΦ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting(DP-EMC)with different electromagnetic parameters were studied.The results demonstrate that the increase in current intensity only changes the magnitude but does not change the Lorentz force's distribution characteristics.The maximum value of the Lorentz force increases linearly followed by an increase in current intensity.As the frequency increases,the Lorentz force's r component remains constant,and the z component decreases slightly.The change in current intensity correlates with the melt oscillation and convection intensity positively,as well as the liquid sump temperature uniformity.It does not mean that the higher the electric current,the better the metallurgical quality of the billet.A lower frequency is beneficial to generate a more significant melt flow and velocity fluctuation,which is helpful to create a more uniform temperature field.Appropriate DP-EMC parameters for aΦ300 mm AZ80 Mg alloy are 10-20 Hz frequency and 80-100 A current intensity.展开更多
During continuous casting of steel slabs,the application of electromagnetic braking technology(EMBr)provides an effective tool to influence solidification by controlling the pattern of melt flow in the mold.Thus,the q...During continuous casting of steel slabs,the application of electromagnetic braking technology(EMBr)provides an effective tool to influence solidification by controlling the pattern of melt flow in the mold.Thus,the quality of the final product can be improved considerably.A new electromagnetic braking(EMBr)method,named vertical-combined electromagnetic braking(VC-EMBr),is proposed to be applied to a flexible thin slab casting(FTSC)mold.To evaluate the beneficial effects of the VC-EMBr,the melt flow,heat transfer,and solidification processes in the FTSC mold are studied by means of numerical simulations.In detail,a Reynolds-averaged Navier–Stokes turbulence model together with an enthalpy-porosity approach was used.The numerical findings are compared with respective simulations using the traditional Ruler-EMBr.The results demonstrate that the application of the VC-EMBr contributes significantly to preventing relative slab defects.In contrast to the Ruler-EMBr,the additional vertical magnetic poles of the VC-EMBr preferentially suppress the direct impact of jet flow on the narrow face of FSTC mold and considerably diminish the level fluctuation near the meniscus region.For instance,by applying a magnetic flux density of 0.3 T,the maximum amplitude of meniscus deflection reduces by about 80%.Moreover,the braking effect of the VC-EMBr effectively improves the homogeneity of temperature distribution in the upper recirculation region and increases the solidified shell thickness along the casting direction.On this basis,the newly proposed VC-EMBr shows a beneficial effect in preventing relative slab defects for FTSC thin slab continuous casting.展开更多
Fused deposition modelling (FDM) is a filament based rapid prototyping system which offers the possibility of introducing new composite material for the FDM process as long as the new material can be made in feedstock...Fused deposition modelling (FDM) is a filament based rapid prototyping system which offers the possibility of introducing new composite material for the FDM process as long as the new material can be made in feedstock filament form. Swinburne has been undertaking extensive research in development of new composite materials involving acrylonitrile-butadiene-styrene (ABS) and other materials including metals. In order to predict the behaviour of new ABS based composite materials in the course of FDM process, it is necessary to investigate the flow of the composite material in liquefier head. No such study is available considering the geometry of the liquefier head. This paper presents 2-D and 3-D numerical analysis of melt flow behaviour of a representative ABS-iron composite through the 90-degree bent tube of the liquefier head of the fused deposition modelling process using ANSYS FLOTRAN and CFX finite element packages. Main flow parameters including temperature, velocity, and pressure drop have been investigated. Filaments of the filled ABS have been fabricated and characterized to verify the possibility of prototyping using the new material on the current FDM machine. Results provide promising information in developing the melt flow modelling of metal-plastic composites and in optimising the FDM parameters for better part quality with such composites.展开更多
With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the comp...With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.展开更多
A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction now.The numerical results from finite element analysis are consistent with experimental data for stress patt...A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction now.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocityprofiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction byusing the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation ofpolymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simpleshear flow, extensional flow, vortical flow, and mixed flow respectively.展开更多
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel...Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.展开更多
Conceptually, an imagined conformation ellipsoid is supposed to represent the shape of a polymer chain for polymer melts in flow fields and to be equivalent to the volume element in a mathematical sense in continuum m...Conceptually, an imagined conformation ellipsoid is supposed to represent the shape of a polymer chain for polymer melts in flow fields and to be equivalent to the volume element in a mathematical sense in continuum mechanics. A power law dependence of shear modulus of polymer melts on detC, referred to as envelope volume, is proposed. Based on those assumptions and the non-linear relation of shear modulus, a phenomenological viscoelastic model is derived. The model is tested in simple shear flow, simple elongational flow, oscillatory shear flow, and relaxation process after flow suddenly stopped. The results show that the model works well to predict the change of internal structure and viscoelastic performance of polymer melts in flow fields.展开更多
The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x dire...The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harphain and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.展开更多
The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth ...The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.展开更多
An incompressible three-dimensional laminar flow in a cross flow direction is described in this work. The term of melting and viscous dissipation is incorporated in the mathematical modeling of present flow problem. T...An incompressible three-dimensional laminar flow in a cross flow direction is described in this work. The term of melting and viscous dissipation is incorporated in the mathematical modeling of present flow problem. The flow expressions are converted into dimensionless equations, which are solved with help of Runge-Kutta scheme. Impact of the emerging parameters on the non-dimensional velocities and temperature and friction-factors and local Nusselt number are examined. The convergence analysis is found for ε < 0 and 0 < ε≤ 2. Comparative analysis is made between the obtained results and published data for limiting case. It is explored at the surface that the melting parameter retards the liquid temperature while it enhances the fluid velocity.展开更多
The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid i...The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.展开更多
A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the fl...A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the flow patterns within the melting tank.In order to improve the quality of glass products and the efficiency of the melting process,it is necessary to control the flow patterns and to optimize the temperature distribution within the melting tank.Using Lorentz force to create additional flow components based on electric current density distributions and externally generated magnetic fields is an excellent method to obtain targeted and tailored flow influences.In order to evaluate this method,it is necessary to simulate the induced alterations of the melt flow.Such numerical simulations require the coupling of the electromagnetic and flow field calculations including the energy equation because the electrical conductivity of the molten glass is strongly dependent on the temperature.The idea is to include the calculation of the magnetic field completely into FLUENT using the so-called User Defined Scalars(UDS)and User Defined Functions(UDF).展开更多
A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted wi...A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted with one matte tap hole (1-to-l) and one slag tap hole adopted with two matte tap holes (1-to-2) operation modes were modelled. The simulation results show that the melt flows are similar in both two operation modes, but evident circulations can be found in the case of the 1-to-2 operation mode. The combination modes of the slag and matte tap holes are found to have a significant effect on the temperature distributions of the melt. The melt temperature is more uniform in the case of the 1-to-2 mode. Selection of a matte tap hole farther away from the inlet is more conducive to achieve a uniform distribution of the melt temperature in the settler in nractical tannine oneration展开更多
Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been s...Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.展开更多
This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear visc...This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance.展开更多
During continuous casting of steel,knowledge of both direction and magnitude of the velocity at the mold surface is of special interest.However,the surface is covered by a non-transparent layer of mold powder to preve...During continuous casting of steel,knowledge of both direction and magnitude of the velocity at the mold surface is of special interest.However,the surface is covered by a non-transparent layer of mold powder to prevent formation of slag.Thus,this meniscus flow cannot be registered by optical measurement techniques.Non-contact measurement methods are of interest.One of such non-invasive techniques is Lorentz force veloeimetry(LFV).It is based on measuring the electromagnetically induced force acting on a magnet system.In this paper we present a series of experiments that aim to demonstrate the feasibility of using two identical velocimeters,termed Time-of-Flight LFV(ToF LFV).Using ToF LFV the free-surface velocity may be purely determined by cross-correlating the two force signals delivered by the two force sensors.We have developed a special prototype of such a measuring device termed meniscus velocity sensor(MVS).It has been designed to record local surface velocities in high-temperature metal melts.At Ilmenau University of Technology,the method has been successfully tested using both solid body movement and Ga^(68%)In^(20%)Sn^(12%)as a low-melting model melt.In the present paper we apply this technique to the case of high-temperature metal melts.In more detail,we present test measurements under industry-relevant conditions using both Sn^(32%)pb^(52%)Bi at 210℃ and molten steel at about 1700℃.These experiments were conducted at Key Laboratories on EPM at North Eastern University.The evaluation of the data shows that our prototype of MVS works well in producing reproducible signals of which surface velocity can be determined.展开更多
Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic...Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (No.50374043).
文摘The effects of various factors on the flow speed of interdendritic melt were analyzed in detail in the process of continuous casting slabs. When the solid-liquid interface bends periodically, the expression of solute distribution in the columnar crystal zone was deduced, and the quantitative calculation was also made. The results show that the bulge and the interdendritic spacing are responsible for the flow speed of interdendritic melt. At the initial stage of solidification the bulge operates, and at the final stage the interdendritic spacing operates. The experimental results of macrosegregation in the slabs validated the calculated results of the flow speed of interdendritic melt, which shows that the calculated results are basically consistent with the experimental ones.
基金the Fundamental Research Funds for the Central Universities(Grant No.N2009003)the National Natural Science Foundation of China(Grant No.51904151).
文摘Based on multi-physical field coupling numerical simulation method,magnetic field distribution,melt flow,and heat transfer behavior of aΦ300 mm AZ80 alloy billet during differential phase electromagnetic DC casting(DP-EMC)with different electromagnetic parameters were studied.The results demonstrate that the increase in current intensity only changes the magnitude but does not change the Lorentz force's distribution characteristics.The maximum value of the Lorentz force increases linearly followed by an increase in current intensity.As the frequency increases,the Lorentz force's r component remains constant,and the z component decreases slightly.The change in current intensity correlates with the melt oscillation and convection intensity positively,as well as the liquid sump temperature uniformity.It does not mean that the higher the electric current,the better the metallurgical quality of the billet.A lower frequency is beneficial to generate a more significant melt flow and velocity fluctuation,which is helpful to create a more uniform temperature field.Appropriate DP-EMC parameters for aΦ300 mm AZ80 Mg alloy are 10-20 Hz frequency and 80-100 A current intensity.
基金National Natural Science Foundation of China(Grant Nos.U1760206 and 51574083)the 111 Project(2.0)of China(No.BP0719037)for the financial support+1 种基金The first author is grateful for financial support provided by the Institute of Thermodynamics and Fluid Mechanics at Technische Universität Ilmenau,Germany,and the Verein zur Förderung der Thermo-und Fluiddynamik e.V.Furthermore,the authors are grateful to Deutsche Forschungsgemeinschaft(DFG)for the financial support in the framework of the Research Training Group Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing(GRK 1567)Finally,the authors acknowledge support by the Computer Center at TU Ilmenau for providing the computational resources.
文摘During continuous casting of steel slabs,the application of electromagnetic braking technology(EMBr)provides an effective tool to influence solidification by controlling the pattern of melt flow in the mold.Thus,the quality of the final product can be improved considerably.A new electromagnetic braking(EMBr)method,named vertical-combined electromagnetic braking(VC-EMBr),is proposed to be applied to a flexible thin slab casting(FTSC)mold.To evaluate the beneficial effects of the VC-EMBr,the melt flow,heat transfer,and solidification processes in the FTSC mold are studied by means of numerical simulations.In detail,a Reynolds-averaged Navier–Stokes turbulence model together with an enthalpy-porosity approach was used.The numerical findings are compared with respective simulations using the traditional Ruler-EMBr.The results demonstrate that the application of the VC-EMBr contributes significantly to preventing relative slab defects.In contrast to the Ruler-EMBr,the additional vertical magnetic poles of the VC-EMBr preferentially suppress the direct impact of jet flow on the narrow face of FSTC mold and considerably diminish the level fluctuation near the meniscus region.For instance,by applying a magnetic flux density of 0.3 T,the maximum amplitude of meniscus deflection reduces by about 80%.Moreover,the braking effect of the VC-EMBr effectively improves the homogeneity of temperature distribution in the upper recirculation region and increases the solidified shell thickness along the casting direction.On this basis,the newly proposed VC-EMBr shows a beneficial effect in preventing relative slab defects for FTSC thin slab continuous casting.
文摘Fused deposition modelling (FDM) is a filament based rapid prototyping system which offers the possibility of introducing new composite material for the FDM process as long as the new material can be made in feedstock filament form. Swinburne has been undertaking extensive research in development of new composite materials involving acrylonitrile-butadiene-styrene (ABS) and other materials including metals. In order to predict the behaviour of new ABS based composite materials in the course of FDM process, it is necessary to investigate the flow of the composite material in liquefier head. No such study is available considering the geometry of the liquefier head. This paper presents 2-D and 3-D numerical analysis of melt flow behaviour of a representative ABS-iron composite through the 90-degree bent tube of the liquefier head of the fused deposition modelling process using ANSYS FLOTRAN and CFX finite element packages. Main flow parameters including temperature, velocity, and pressure drop have been investigated. Filaments of the filled ABS have been fabricated and characterized to verify the possibility of prototyping using the new material on the current FDM machine. Results provide promising information in developing the melt flow modelling of metal-plastic composites and in optimising the FDM parameters for better part quality with such composites.
文摘With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.
基金This work was supported by the research grants from the National Nature Science Foundation of China (No. 20174024) and the Special Founds for Major State Basic Research Projects (G199906408)
文摘A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction now.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocityprofiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction byusing the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation ofpolymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simpleshear flow, extensional flow, vortical flow, and mixed flow respectively.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.
基金This project is supported by the National Natural Science Foundation of China
文摘Conceptually, an imagined conformation ellipsoid is supposed to represent the shape of a polymer chain for polymer melts in flow fields and to be equivalent to the volume element in a mathematical sense in continuum mechanics. A power law dependence of shear modulus of polymer melts on detC, referred to as envelope volume, is proposed. Based on those assumptions and the non-linear relation of shear modulus, a phenomenological viscoelastic model is derived. The model is tested in simple shear flow, simple elongational flow, oscillatory shear flow, and relaxation process after flow suddenly stopped. The results show that the model works well to predict the change of internal structure and viscoelastic performance of polymer melts in flow fields.
基金the National Natural Science Foundation(Granted Number 50276010)
文摘The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harphain and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.
基金the National Basic Research Program of China (the Project 973) (2006CB605205)the National Natural Science Foundation of China (10672019)
文摘The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.
文摘An incompressible three-dimensional laminar flow in a cross flow direction is described in this work. The term of melting and viscous dissipation is incorporated in the mathematical modeling of present flow problem. The flow expressions are converted into dimensionless equations, which are solved with help of Runge-Kutta scheme. Impact of the emerging parameters on the non-dimensional velocities and temperature and friction-factors and local Nusselt number are examined. The convergence analysis is found for ε < 0 and 0 < ε≤ 2. Comparative analysis is made between the obtained results and published data for limiting case. It is explored at the surface that the melting parameter retards the liquid temperature while it enhances the fluid velocity.
基金This work was financially supported by the Major State Basic Research Development Program of China (973 Program, No.2006CB605205)
文摘The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.
文摘A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the flow patterns within the melting tank.In order to improve the quality of glass products and the efficiency of the melting process,it is necessary to control the flow patterns and to optimize the temperature distribution within the melting tank.Using Lorentz force to create additional flow components based on electric current density distributions and externally generated magnetic fields is an excellent method to obtain targeted and tailored flow influences.In order to evaluate this method,it is necessary to simulate the induced alterations of the melt flow.Such numerical simulations require the coupling of the electromagnetic and flow field calculations including the energy equation because the electrical conductivity of the molten glass is strongly dependent on the temperature.The idea is to include the calculation of the magnetic field completely into FLUENT using the so-called User Defined Scalars(UDS)and User Defined Functions(UDF).
基金Project (2002AA00104) supported by the National High-tech Research and Development Program of China
文摘A computational fluid dynamics (CFD) simulation was carried out with CFX4,3 to investigate the melt flow and temperature distributions in the settler of a flash furnace. Sixteen cases of one slag tap hole adopted with one matte tap hole (1-to-l) and one slag tap hole adopted with two matte tap holes (1-to-2) operation modes were modelled. The simulation results show that the melt flows are similar in both two operation modes, but evident circulations can be found in the case of the 1-to-2 operation mode. The combination modes of the slag and matte tap holes are found to have a significant effect on the temperature distributions of the melt. The melt temperature is more uniform in the case of the 1-to-2 mode. Selection of a matte tap hole farther away from the inlet is more conducive to achieve a uniform distribution of the melt temperature in the settler in nractical tannine oneration
基金financially supported by the Major National Science and Technology Projects(No.2008ZX02401)
文摘Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20030561014)
文摘This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance.
基金This work is partially supported from the National Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant RGPIN48158 awarded to M.Hasan of McGill University,Montreal,for which the authors are grateful.
基金Item Sponsored by German Science Foundation (Deutsche Forschungsgemeinschaft) Within the Research Training Group on Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing (RTG) as Well as by Bundesministerium für Bildung und Forschung (BMBF) Within the ForMaT2 Program
文摘During continuous casting of steel,knowledge of both direction and magnitude of the velocity at the mold surface is of special interest.However,the surface is covered by a non-transparent layer of mold powder to prevent formation of slag.Thus,this meniscus flow cannot be registered by optical measurement techniques.Non-contact measurement methods are of interest.One of such non-invasive techniques is Lorentz force veloeimetry(LFV).It is based on measuring the electromagnetically induced force acting on a magnet system.In this paper we present a series of experiments that aim to demonstrate the feasibility of using two identical velocimeters,termed Time-of-Flight LFV(ToF LFV).Using ToF LFV the free-surface velocity may be purely determined by cross-correlating the two force signals delivered by the two force sensors.We have developed a special prototype of such a measuring device termed meniscus velocity sensor(MVS).It has been designed to record local surface velocities in high-temperature metal melts.At Ilmenau University of Technology,the method has been successfully tested using both solid body movement and Ga^(68%)In^(20%)Sn^(12%)as a low-melting model melt.In the present paper we apply this technique to the case of high-temperature metal melts.In more detail,we present test measurements under industry-relevant conditions using both Sn^(32%)pb^(52%)Bi at 210℃ and molten steel at about 1700℃.These experiments were conducted at Key Laboratories on EPM at North Eastern University.The evaluation of the data shows that our prototype of MVS works well in producing reproducible signals of which surface velocity can be determined.
基金supported by the National Natural Foundation of China
文摘Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field.