In model experiments were studied the effect of cosmo-geophysical factors of environment (hypomagnetic conditions during 2 days ≈ 1 mkT;electromagnetic irradiation (10 min - 2 MHz with amplitude 5 V/m and power 30 mk...In model experiments were studied the effect of cosmo-geophysical factors of environment (hypomagnetic conditions during 2 days ≈ 1 mkT;electromagnetic irradiation (10 min - 2 MHz with amplitude 5 V/m and power 30 mkVt, background 2 - 4 mkVt), γ-quantum (10 min—from the source 137Cs) and its combined effect on the physic-chemical properties (ORP and pH) of growing medium for cell culture of mammals as nutrition medium 199 (PanEco, Russia). It was used a clear solution of medium (solution 1) and with the adding of 10% embryo bull serum—model of bio-medium (solution 2). Hypomagnetic conditions evoked the decreasing of ORP and pH value in both solutions, electromagnetic irradiation in the solution 1 which evoked the decreasing of ORP and the increasing of pH value, and in the solution 2, on the contrary, the increasing of ORP with the unchanging pH value. γ-radiation sharply decreased ORP value and didn’t change pH in solution 1, i.e. the reduction properties increased. There is insignificant increasing of ORP value and the decreasing of pH is noted in the solution 2, that it is characterized with the increasing of oxidative properties of solution. Under the combined effect of hypomagnetic conditions and electromagnetic irradiation, the values of investigating parameters in the solution 1 decreased and in the solution 2 increased. It was observed acute decreasing of ORP value in both solutions under the combined effect of hypomagnetic conditions and γ-radiation, i.e. the reductive properties of the solutions increased sharply. In this the concentration H+ significantly decreased, (p γ-radiation led to the decreasing of ORP and pH values in both solutions. Thus, the studying factors significantly change the oxidation-reduction properties of growing mediums. The investigation of the processes in biological mediums plays the important role in the assessment of environment effect during the flight in inter-planet space.展开更多
Aiming at the treatment of difficult-to-handle oily wastewater, the ceramics filter mediums made from the iron and steel plant sludge were adopted to surface lipophilic modification so as to remove oil efficiently. Th...Aiming at the treatment of difficult-to-handle oily wastewater, the ceramics filter mediums made from the iron and steel plant sludge were adopted to surface lipophilic modification so as to remove oil efficiently. The hydrolysis technique by FTIR and conductivity test indicated that under acid conditions hydrogen silicon oil did not hydrolyze but release hydrogen by chemical reaction under alkaline conditions. The results of the experiments including contact angle measurement, FTIR analysis, and SEM analysis illustrate that a layer of lipophile coating indeed exists evenly on the surface of filter mediums after modification. Furthermore, the hydrogen-containing silicone oil was combined through dehydration of Si-H bond with the-OH on the surface of ceramic filter medium.展开更多
Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes de...Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes death of this potential tree-species within a few months. Vegetative propagation could avoid the die-back disease. Thirty mother trees of different age-groups of D. sissoo were selected for evaluating the rooting behaviour of branch cuttings from D. sissoo as influenced by auxins (IAA or IBA at 100, 200, 500 mg·L^-1), ages of mother trees (10, 4 and 2 years old) and different environment conditions, i.e., different mediums (soil and sand) or light conditions (in shade and open condition). The results show that application of IAA and IBA induced more numbers of cuttings (collected from 10-year-old mother trees) to root compared to control. Branch cuttings of D. sissoo collected from 10-year-old mother trees and planted in soil bed in open conditions had 100.0% of cuttings to root in IAA (100 mg·L^-1) and IBA (200 mg·L^-1) treatments. Both rooting medium (Soil and sand) influenced significantly (p〈0.05) on rooting response of branch cuttings. Soil medium was found to achieve maximum no. of branch cuttings to root, compared to sand medium.展开更多
Chinquapin(Castanea henryi) is a dual-purpose tree species in China valued for as a source of timber and starch.We investigated the effect of four cutting mediums(pure vermiculite;peat:river sand at 3:1 v/v;peat:krasn...Chinquapin(Castanea henryi) is a dual-purpose tree species in China valued for as a source of timber and starch.We investigated the effect of four cutting mediums(pure vermiculite;peat:river sand at 3:1 v/v;peat:krasnozem at 1:1 v/v;and pure krasnozem) and three stem cutting periods(March,May,and July) on rooting performance of C.henryi cuttings.Different cutting periods and cutting mediums greatly influenced the rooting rate of C.henryi,ranging from 3.35 to 77.31%.Principal component analysis indicated that the best combination of cutting period and cutting medium was semi-hardwood cuttings(May cuttings)+krasnozem.Histological evidence indicated that adventitious root initials were present by week 5-6,and that the site of root primordia initiation was observed in the vascular cambium.Stem anatomical structures observed at different periods indicated that a xylem/radius ratio of29.90-37.42% and a fractured phloem fiber ring are indicative of rooting success.The relational model between rooting index and medium properties indicated that nutrient content and porosity significantly influenced callus production.However,pH strongly affected C.henryi root formation,with the Pearson correlation coefficients for May and July cuttings of-0.856 and-0.947,respectively.Our protocol is helpful to achieve mass clone propagation of improved C.henryi genotypes,thus overcoming a common hurdle in chinquapin breeding programs.展开更多
In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sin...In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sink effect on weld strength. In this work, the effect of aluminium heat sink and varying cooling medium on the laser welding of duplex stainless steel (DSS) 2205 is studied. The 2 mm thick DSS sheets welded with pulsed Nd: YAG laser welding machine by varying the cooling medium (air and oil) and an aluminium plate used as a heat sink. The welded specimens tested for tensile strength, micro-hardness, distortion, microstructure and radiography analysis. The faster cooling rate in the oil quenching process enhances the ferrite percentage compared with air-cooled samples. But the faster cooling rate in oil quenching leads to more distortion and using aluminium as a heat sink influenced positively the distortion to a small extent. The lower cooling rate in air quenching leads to a higher tensile strength of the welded specimen. The objective of this work is to analyse experimentally the effect of cooling medium and heat sink in the mechanical and metallurgical properties of laser welded duplex stainless steel.展开更多
We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coeffic...We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.展开更多
This paper deals with the microwave focusing in the layer mediums near the antenna aperture. Based on the plane-wave spectrum theory, the relationship between the Hertz potential and the electromagnetic field is discu...This paper deals with the microwave focusing in the layer mediums near the antenna aperture. Based on the plane-wave spectrum theory, the relationship between the Hertz potential and the electromagnetic field is discussed. An approach to the description of the field distribution in the layer mediums in case of an arbitary field source is proposed. Given the focusing current distribution over the antenna aperture, the field distribution of the focal region is worked out. In describing the field distribution over the focal region, the integration of spectrum functions in the spectrum domain (kx,ky) is carried out instead of the complicated Fresnel integral. The approximations are obtained by the saddle-point integration. Comparison with experimental results demonstrates the validity of the approach.展开更多
The O_(2)-CaO jet with shrouding combustion flame demonstrates some advantages in quick melting and effective slag foaming by delivering lime powder deeply into the molten bath.Combining the discrete particle model an...The O_(2)-CaO jet with shrouding combustion flame demonstrates some advantages in quick melting and effective slag foaming by delivering lime powder deeply into the molten bath.Combining the discrete particle model and the eddy dissipation concept model with the detailed chemical kinetic mechanisms(GRI-Mech 3.0),computational fluid dynamics models of the O_(2)-CaO jet with different shrouding fuel mediums injection were developed.Firstly,the results of the numerical simulation were validated by the measured data of cold test for O_(2)-CaO injection.Then,the interaction between the particles and the gas jet of the O_(2)-CaO jet and the effect of shrouding fuel medium species on the fluid flow characteristics of the O_(2)-CaO jet were analyzed.Results show that the CaO particles can be effectively heated by the shrouding high-temperature combustion flame and compared with the O_(2)-CaO jet without shrouding gas,the potential core length was increased about 2.5,3.3 and 4.3 times by the shrouding flame generated from CO,CH_(4) and C_(3)H_(8).And with shrouding CH_(4) and C_(3)H_(8) injection,the CaO particles can be clustered together in a long distance,which would be helpful to improve the utilization efficiency of CaO particles.展开更多
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view o...The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.展开更多
This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs...This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.展开更多
The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (...The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.I...CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.Increasingly,it is heralded as a way to responsibly enact top-down English-Medium-of-Instruction(EMI)policies at the university level,where teachers and students are tasked with developing their English proficiency while remaining competitive in the international job market.However,teachers and teacher educators hoping to implement this approach in their science,technology,engineering and mathematics(STEM)content courses face significant challenges.This article serves as an introduction to a vip-edited special issue that reports on several aspects related to a project of international collaboration called Project SCILLA,an acronym for“STEM Content Integrated with Language-Learning Activities”.We first provide a brief overview of the project,which was developed and carried out in collaboration between Michigan State University and a consortium of 10 rural universities in Kazakhstan as a way to support STEM educators who wish to adapt their teaching practices to Kazakhstan’s Ministry of Education.We then offer an overview of the six articles that comprise the special issue,and call for deliberate and dialogic international collaboration as a way to support teachers responding to language policy demands.展开更多
The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulati...The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.展开更多
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi...Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.展开更多
文摘In model experiments were studied the effect of cosmo-geophysical factors of environment (hypomagnetic conditions during 2 days ≈ 1 mkT;electromagnetic irradiation (10 min - 2 MHz with amplitude 5 V/m and power 30 mkVt, background 2 - 4 mkVt), γ-quantum (10 min—from the source 137Cs) and its combined effect on the physic-chemical properties (ORP and pH) of growing medium for cell culture of mammals as nutrition medium 199 (PanEco, Russia). It was used a clear solution of medium (solution 1) and with the adding of 10% embryo bull serum—model of bio-medium (solution 2). Hypomagnetic conditions evoked the decreasing of ORP and pH value in both solutions, electromagnetic irradiation in the solution 1 which evoked the decreasing of ORP and the increasing of pH value, and in the solution 2, on the contrary, the increasing of ORP with the unchanging pH value. γ-radiation sharply decreased ORP value and didn’t change pH in solution 1, i.e. the reduction properties increased. There is insignificant increasing of ORP value and the decreasing of pH is noted in the solution 2, that it is characterized with the increasing of oxidative properties of solution. Under the combined effect of hypomagnetic conditions and electromagnetic irradiation, the values of investigating parameters in the solution 1 decreased and in the solution 2 increased. It was observed acute decreasing of ORP value in both solutions under the combined effect of hypomagnetic conditions and γ-radiation, i.e. the reductive properties of the solutions increased sharply. In this the concentration H+ significantly decreased, (p γ-radiation led to the decreasing of ORP and pH values in both solutions. Thus, the studying factors significantly change the oxidation-reduction properties of growing mediums. The investigation of the processes in biological mediums plays the important role in the assessment of environment effect during the flight in inter-planet space.
基金Funded by the National Natural Science Foundation of China(No.20876122)Self-determined and Innovative Research Funds of WUT
文摘Aiming at the treatment of difficult-to-handle oily wastewater, the ceramics filter mediums made from the iron and steel plant sludge were adopted to surface lipophilic modification so as to remove oil efficiently. The hydrolysis technique by FTIR and conductivity test indicated that under acid conditions hydrogen silicon oil did not hydrolyze but release hydrogen by chemical reaction under alkaline conditions. The results of the experiments including contact angle measurement, FTIR analysis, and SEM analysis illustrate that a layer of lipophile coating indeed exists evenly on the surface of filter mediums after modification. Furthermore, the hydrogen-containing silicone oil was combined through dehydration of Si-H bond with the-OH on the surface of ceramic filter medium.
基金supported by Indian Council ofForestry Research and Education (ICFRE), Dehradun, 248 006, Uttarakhand, India
文摘Dalbergia sissoo Roxb. is one of the promising multipurpose tree species of South Asia. Most of the plantations of D. sissoo from seeds are facing severe threats due to the die-back disease, which ultimately causes death of this potential tree-species within a few months. Vegetative propagation could avoid the die-back disease. Thirty mother trees of different age-groups of D. sissoo were selected for evaluating the rooting behaviour of branch cuttings from D. sissoo as influenced by auxins (IAA or IBA at 100, 200, 500 mg·L^-1), ages of mother trees (10, 4 and 2 years old) and different environment conditions, i.e., different mediums (soil and sand) or light conditions (in shade and open condition). The results show that application of IAA and IBA induced more numbers of cuttings (collected from 10-year-old mother trees) to root compared to control. Branch cuttings of D. sissoo collected from 10-year-old mother trees and planted in soil bed in open conditions had 100.0% of cuttings to root in IAA (100 mg·L^-1) and IBA (200 mg·L^-1) treatments. Both rooting medium (Soil and sand) influenced significantly (p〈0.05) on rooting response of branch cuttings. Soil medium was found to achieve maximum no. of branch cuttings to root, compared to sand medium.
基金funded by the National Natural Science Foundation of China (Grant Nos.31870674,31500554)the Natural Science Foundation of Hunan Province (Grant No.2018JJ3870)。
文摘Chinquapin(Castanea henryi) is a dual-purpose tree species in China valued for as a source of timber and starch.We investigated the effect of four cutting mediums(pure vermiculite;peat:river sand at 3:1 v/v;peat:krasnozem at 1:1 v/v;and pure krasnozem) and three stem cutting periods(March,May,and July) on rooting performance of C.henryi cuttings.Different cutting periods and cutting mediums greatly influenced the rooting rate of C.henryi,ranging from 3.35 to 77.31%.Principal component analysis indicated that the best combination of cutting period and cutting medium was semi-hardwood cuttings(May cuttings)+krasnozem.Histological evidence indicated that adventitious root initials were present by week 5-6,and that the site of root primordia initiation was observed in the vascular cambium.Stem anatomical structures observed at different periods indicated that a xylem/radius ratio of29.90-37.42% and a fractured phloem fiber ring are indicative of rooting success.The relational model between rooting index and medium properties indicated that nutrient content and porosity significantly influenced callus production.However,pH strongly affected C.henryi root formation,with the Pearson correlation coefficients for May and July cuttings of-0.856 and-0.947,respectively.Our protocol is helpful to achieve mass clone propagation of improved C.henryi genotypes,thus overcoming a common hurdle in chinquapin breeding programs.
文摘In order to control the ferrite and austenite percentage in duplex stainless steel welding, many researchers try to change the laser welding parameters and cooling medium, but ignore to study the influence of heat sink effect on weld strength. In this work, the effect of aluminium heat sink and varying cooling medium on the laser welding of duplex stainless steel (DSS) 2205 is studied. The 2 mm thick DSS sheets welded with pulsed Nd: YAG laser welding machine by varying the cooling medium (air and oil) and an aluminium plate used as a heat sink. The welded specimens tested for tensile strength, micro-hardness, distortion, microstructure and radiography analysis. The faster cooling rate in the oil quenching process enhances the ferrite percentage compared with air-cooled samples. But the faster cooling rate in oil quenching leads to more distortion and using aluminium as a heat sink influenced positively the distortion to a small extent. The lower cooling rate in air quenching leads to a higher tensile strength of the welded specimen. The objective of this work is to analyse experimentally the effect of cooling medium and heat sink in the mechanical and metallurgical properties of laser welded duplex stainless steel.
文摘We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.
文摘This paper deals with the microwave focusing in the layer mediums near the antenna aperture. Based on the plane-wave spectrum theory, the relationship between the Hertz potential and the electromagnetic field is discussed. An approach to the description of the field distribution in the layer mediums in case of an arbitary field source is proposed. Given the focusing current distribution over the antenna aperture, the field distribution of the focal region is worked out. In describing the field distribution over the focal region, the integration of spectrum functions in the spectrum domain (kx,ky) is carried out instead of the complicated Fresnel integral. The approximations are obtained by the saddle-point integration. Comparison with experimental results demonstrates the validity of the approach.
基金the Fundamental Research Funds for the Central Universities(FRF-TP-19-031A1)the China Post Postdoctoral Science Foundation(2020T130053,2019M660459)the National Natural Science Foundation of China(No.51734003).
文摘The O_(2)-CaO jet with shrouding combustion flame demonstrates some advantages in quick melting and effective slag foaming by delivering lime powder deeply into the molten bath.Combining the discrete particle model and the eddy dissipation concept model with the detailed chemical kinetic mechanisms(GRI-Mech 3.0),computational fluid dynamics models of the O_(2)-CaO jet with different shrouding fuel mediums injection were developed.Firstly,the results of the numerical simulation were validated by the measured data of cold test for O_(2)-CaO injection.Then,the interaction between the particles and the gas jet of the O_(2)-CaO jet and the effect of shrouding fuel medium species on the fluid flow characteristics of the O_(2)-CaO jet were analyzed.Results show that the CaO particles can be effectively heated by the shrouding high-temperature combustion flame and compared with the O_(2)-CaO jet without shrouding gas,the potential core length was increased about 2.5,3.3 and 4.3 times by the shrouding flame generated from CO,CH_(4) and C_(3)H_(8).And with shrouding CH_(4) and C_(3)H_(8) injection,the CaO particles can be clustered together in a long distance,which would be helpful to improve the utilization efficiency of CaO particles.
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
基金supported by the National Nature Science Foundation of China (Grant Nos. 11172069 and 10872051)some key project of education reforms issued by the Shanghai Municipal Education Commission (2011)
文摘The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.
文摘This article presents a detailed theoretical hybrid analysis of the magnetism and the thermal radiative heat transfer in the presence of heat generation affecting the behavior of the dispersed gold nanoparticles(AuNPs)through the blood vessels of the human body.The rheology of gold-blood nanofluid is treated as magnetohydrodynamic(MHD)flow with ferromagnetic properties.The AuNPs take different shapes as bricks,cylinders,and platelets which are considered in changing the nanofluid flow behavior.Physiologically,the blood is circulated under the kinetics of the peristaltic action.The mixed properties of the slip flow,the gravity,the space porosity,the transverse ferromagnetic field,the thermal radiation,the nanoparticles shape factors,the peristaltic amplitude ratio,and the concentration of the AuNPs are interacted and analyzed for the gold-blood circulation in the inclined tube.The appropriate model for the thermal conductivity of the nanofluid is chosen to be the effective Hamilton-Crosser model.The undertaken nanofluid can be treated as incompressible non-Newtonian ferromagnetic fluid.The solutions of the partial differential governing equations of the MHD nanofluid flow are executed by the strategy of perturbation approach under the assumption of long wavelength and low Reynolds number.Graphs for the streamwise velocity distributions,temperature distributions,pressure gradients,pressure drops,and streamlines are presented under the influences of the pertinent properties.The practical implementation of this research finds application in treating cancer through a technique known as photothermal therapy(PTT).The results indicate the control role of the magnetism,the heat generation,the shape factors of the AuNPs,and its concentration on the enhancement of the thermal properties and the streamwise velocity of the nanofluid.The results reveal a marked enhancement in the temperature profiles of the nanofluid,prominently influenced by both the intensified heat source and the heightened volume fractions of the nanoparticles.Furthermore,the platelet shape is regarded as most advantageous for heat conduction owing to its highest effective thermal conductivity.AuNPs proved strong efficiency in delivering and targeting the drug to reach the affected area with tumors.These results offer valuable insights into evaluating the effectiveness of PTT in addressing diverse cancer conditions and regulating their progression.
基金funding from the National Natural Science Foundation of China(Nos.52063017 and 52061025)the Major Science and Technology Project of Gansu Province(Nos.22ZD6GA008 and 20ZD7GJ008)+3 种基金the Natural Science Foundation of Gansu Province(No.23JRRA820)The Science and Technology Project of Major Science and Technology Project of Gansu Province(No.22ZD6GA008)the Science and Technology Project of Gansu Province(No.23YFGA0058)the College Industry Support Plan of Gansu Province(No.2023CYZC-27).
文摘The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金funding from the U.S.-Kazakhstan University Partnerships program funded by the U.S.Mission to Kazakhstan and administered by American Councils[Award number SKZ100-19-CA-0149].
文摘CLIL,which stands for Content and Language Integrated Learning,is an instructional approach that gives ample curricular and pedagogical attention to content and language outcomes in multilingual educational settings.Increasingly,it is heralded as a way to responsibly enact top-down English-Medium-of-Instruction(EMI)policies at the university level,where teachers and students are tasked with developing their English proficiency while remaining competitive in the international job market.However,teachers and teacher educators hoping to implement this approach in their science,technology,engineering and mathematics(STEM)content courses face significant challenges.This article serves as an introduction to a vip-edited special issue that reports on several aspects related to a project of international collaboration called Project SCILLA,an acronym for“STEM Content Integrated with Language-Learning Activities”.We first provide a brief overview of the project,which was developed and carried out in collaboration between Michigan State University and a consortium of 10 rural universities in Kazakhstan as a way to support STEM educators who wish to adapt their teaching practices to Kazakhstan’s Ministry of Education.We then offer an overview of the six articles that comprise the special issue,and call for deliberate and dialogic international collaboration as a way to support teachers responding to language policy demands.
基金financial support from the National Natural Science Foundation of China(Nos.52233018 and 51831002)the China Baowu Low Carbon Metallurgy Innovation Foudation(No.BWLCF202213)。
文摘The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.
基金supported by the National Key R&D Program of China(No.2024YFB4007501)the Natural Science Foundation of Jiangsu Province(No.BK20240109)the project of Jiangsu Key Laboratory for Clean Utilization of Carbon Resources(No.BM2024007).
文摘Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.