Although common among community adolescents, self-injuring acts are mainly studied by psychiatrists and psychologists and rarely by social work researchers. The preponderance of medical research in the field has come ...Although common among community adolescents, self-injuring acts are mainly studied by psychiatrists and psychologists and rarely by social work researchers. The preponderance of medical research in the field has come to associate self-injuring acts with mental issues. This view has to a large extent been adopted among professionals as well as among laypeople. When examining adolescents’ unsolicited internet published narratives, this medicalization of self-injuring acts was found to have negative consequences for disclosure and help-seeking, and hence limit the adolescents’ possibilities to get adequate help and support. The main objective of this work is to study adolescents’ views on hampering factors for help-seeking for self-injuring acts and the role of medicalisation for their willingness for disclosure and help-seeking. Disclosure of self-injuring acts within the social network was described as met with demands to seek professional mental help. Seeking professional help was accompanied with fear of being perceived as crazy or diagnosed as mentally ill. Internet websites were described as value free and safe arenas giving opportunity to disclose self-injuring acts without fear of being stigmatized and labelled as mentally ill. An extended involvement of social work researchers and professionals, approaching self-injuring acts not primarily as a sign of mental problems, but as an adolescent way of trying to manage a complicated social context, could enhance finding adequate support systems. It is also necessary that the medical profession contributes to a demedicalization of self-injuring acts.展开更多
As we delve into the intricacies of human disease,millions of people continue to be diagnosed as having what are labelled as pre-conditions or sub-clinical entities and may receive treatments designed to prevent furth...As we delve into the intricacies of human disease,millions of people continue to be diagnosed as having what are labelled as pre-conditions or sub-clinical entities and may receive treatments designed to prevent further progression to clinical disease,but with debatable impact and consequences.Endocrinology is no different,with almost every organ system and associated diseases having subclinical entities.Although the expansion of these“grey”pre-conditions and their treatments come with a better understanding of pathophysiologic processes,they also entail financial costs and drug adverse-effects,and lack true prevention,thus refuting the very foundation of Medicine laid by Hippocrates“Primum non nocere”(Latin),i.e.,do no harm.Subclinical hypothyroidism,prediabetes,osteopenia,and minimal autonomous cortisol excess are some of the endocrine preclinical conditions which do not require active pharmacological management in the vast majority.In fact,progression to clinical disease is seen in only a small minority with reversal to normality in most.Giving drugs also does not lead to true prevention by changing the course of future disease.The goal of the medical fraternity thus as a whole should be to bring this large chunk of humanity out of the hospitals towards leading a healthy lifestyle and away from the label of a medical disease condition.展开更多
The process of medicalization of abortion in Poland began when pregnancy termination procedures were legalized in 1956.The context in which that was possible is important:it happened under the communist rule as part o...The process of medicalization of abortion in Poland began when pregnancy termination procedures were legalized in 1956.The context in which that was possible is important:it happened under the communist rule as part of the Soviet bloc.The main goal of communism was to promote scientific approach to medicine and to eliminate popular folk medicine.The communist rule was also characterized by state feminism,which involved mass employment of women in industry and other occupations.The positive side to the changes was the fact that health care was free of charge.However,the system excluded the care of village healers and abortionists who were replaced by obstetricians-gynecologists,usually men.According to the official propaganda,an abortion that was not performed by a medical professional was dangerous for a woman’s health and could cause her death.Indeed,abortion-related mortality decreased,but the rate of abortion itself did not fall;it gradually increased.This is typical for countries with no free market,including communist ones,where access to contraceptive pills is very limited with abortion being the primary method of birth control.After the fall of communism in Poland,access to abortion was severely restricted;nevertheless,contraceptive pills and morning-after pills are available on prescription from pharmacies.The total fertility rate decreased in comparison to the period of communism and its broad access to abortion.Therefore,I maintain that the process of medicalization of abortion has not ended despite the partial disenfranchisement of women.展开更多
Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers...Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers’perceptions regarding AI in diabetes care across China.Methods A cross-sectional survey was conducted using snowball sampling from November 12 to November 24,2024.We selected 514 physicians and nurses by a snowball sampling method from healthcare providers across 30 cities or provinces in China.The self-developed questionnaire comprised five sections with 19 questions assessing medical workers’demographic characteristics,AI-related experience and interest,awareness,attitudes,and concerns regarding AI in diabetes care.Statistical analysis was performed using t-test,analysis of variance(ANOVA),and linear regression.Results Among them,20.0%and 48.1%of respondents had participated in AI-related research and training,while 85.4%expressed moderate to high interest in AI training for diabetes care.Most respondents reported partial awareness of AI in diabetes care,and only 12.6%exhibited a comprehensive or substantial understanding.Attitudes toward AI in diabetes care were generally positive,with a mean score of 24.50±3.38.Nurses demonstrated significantly higher scores than physicians(P<0.05).Greater awareness,prior AI training experience,and higher interest in AI training in diabetes care were strongly associated with more positive attitudes(P<0.05).Key concerns regarding AI included trust issues from AI-clinician inconsistencies(77.2%),increased workload and clinical workflow disruptions(63.4%),and incomplete legal and regulatory frameworks(60.3%).Only 34.2%of respondents expressed concerns about job displacement,indicating general confidence in their professional roles.Conclusions While Chinese healthcare providers show moderate awareness of AI in diabetes care,their attitudes are generally positive,and they are considerably interested in future training.Tailored,role-specific AI training is essential for equitable and effective integration into clinical practice.Additionally,transparent,reliable,ethical AI models must be prioritized to alleviate practitioners’concerns.展开更多
Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values pred...Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values predictive of incomplete abortion requiring surgical intervention.Methods:We retrospectively analyzed a cohort of 702 women diagnosed with first-trimester missed miscarriage between January 2020 and May 2023.Demographic characteristics and ultrasound parameters were systematically recorded.Receiver operating characteristic(ROC)curve analysis was performed to establish optimal sonographic cutoff values for predicting incomplete abortion requiring surgical intervention.Results:146 patients received medical treatment(mifepristone and misoprostol)and 556 underwent surgical curettage.At the 1-month follow-up,the medical group showed significantly greater endometrial thickness and longer postoperative bleeding duration than the surgical group(P<0.05).The menstrual volume reduction rate(23.56%)was significantly lower in the medical group than in the surgical group.The incomplete abortion rate was higher in the medical group(17.12%,25/146)than in the surgical group(2.88%,16/556).Among the medical group,14 patients(9.59%)required curettage due to incomplete abortion,while 11 cases resolved spontaneously after prolonged medication.ROC curve analysis identified two cut-off values indicating the need for surgical intervention:endometrial thickness>1.21 cm at 24 h post-medical abortion,and residual mass diameter>0.95 cm at 7 days post-medical abortion.Conclusions:Medical management of first-trimester missed miscarriage using mifepristone-misoprostol demonstrates comparable efficacy to surgical curettage.An endometrial thickness>1.21 cm at 24 h or residual tissue diameter>0.95 cm at 7 days post-medical abortion should prompt consideration of incomplete abortion.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
The trajectory of human history is characterized by a persistent battle against disease.Over time,the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of con...The trajectory of human history is characterized by a persistent battle against disease.Over time,the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of contemporary medicine that includes fundamental medical and health sciences,clinical medicine,and public health.Nevertheless,the present phase of medical advancement encounters significant challenges,particularly in effectively translating basic research findings into practical applications in clinical and public health settings.Scientists increasingly collaborate with clinical experts to overcome these obstacles and address specific clinical issues by delving deeper into fundamental mechanisms.This collaborative effort has created a new interdisciplinary field:engineering medicine(EngMed),which focuses on addressing clinical and public health needs by integrating various scientific disciplines.This article discusses the definition,key tasks,significance,educational implications,and future trends in EngMed.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dim...Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie...BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.展开更多
Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of ...Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of CIP in water.The influence of various additives(CaO,Fe_(2)O_(3),SiO_(2),Al,and Fe)on CIP degradation efficiency was investigated.Additionally,six types of composite additives(Fe-CaO,Fe-Fe_(2)O_(3),Fe-SiO_(2),Fe-Al,Al-SiO_(2),and Al-CaO)were explored,with the composite of 20%Fe and 80%SiO_(2) exhibiting notable performance.The impacts of additive content,pH value,and co-existing ions on CIP degradation efficiency were investigated.Furthermore,the effectiveness of MCT in degrading other medical pollutants(norfloxacin,ofloxacin,and enrofloxacin)was verified.The transformations and changes in the crystal structure,oxidation state,microstructure,and morphology of the Fe-SiO_(2) composite additive were characterized using X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy techniques.This study proposed a sigmoid trend kinetic model(the Delogu model)that better elucidates the MCT process.Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature.This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.展开更多
In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper...In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).展开更多
This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain an...This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems.展开更多
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medi...Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).展开更多
In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the ...In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.展开更多
文摘Although common among community adolescents, self-injuring acts are mainly studied by psychiatrists and psychologists and rarely by social work researchers. The preponderance of medical research in the field has come to associate self-injuring acts with mental issues. This view has to a large extent been adopted among professionals as well as among laypeople. When examining adolescents’ unsolicited internet published narratives, this medicalization of self-injuring acts was found to have negative consequences for disclosure and help-seeking, and hence limit the adolescents’ possibilities to get adequate help and support. The main objective of this work is to study adolescents’ views on hampering factors for help-seeking for self-injuring acts and the role of medicalisation for their willingness for disclosure and help-seeking. Disclosure of self-injuring acts within the social network was described as met with demands to seek professional mental help. Seeking professional help was accompanied with fear of being perceived as crazy or diagnosed as mentally ill. Internet websites were described as value free and safe arenas giving opportunity to disclose self-injuring acts without fear of being stigmatized and labelled as mentally ill. An extended involvement of social work researchers and professionals, approaching self-injuring acts not primarily as a sign of mental problems, but as an adolescent way of trying to manage a complicated social context, could enhance finding adequate support systems. It is also necessary that the medical profession contributes to a demedicalization of self-injuring acts.
文摘As we delve into the intricacies of human disease,millions of people continue to be diagnosed as having what are labelled as pre-conditions or sub-clinical entities and may receive treatments designed to prevent further progression to clinical disease,but with debatable impact and consequences.Endocrinology is no different,with almost every organ system and associated diseases having subclinical entities.Although the expansion of these“grey”pre-conditions and their treatments come with a better understanding of pathophysiologic processes,they also entail financial costs and drug adverse-effects,and lack true prevention,thus refuting the very foundation of Medicine laid by Hippocrates“Primum non nocere”(Latin),i.e.,do no harm.Subclinical hypothyroidism,prediabetes,osteopenia,and minimal autonomous cortisol excess are some of the endocrine preclinical conditions which do not require active pharmacological management in the vast majority.In fact,progression to clinical disease is seen in only a small minority with reversal to normality in most.Giving drugs also does not lead to true prevention by changing the course of future disease.The goal of the medical fraternity thus as a whole should be to bring this large chunk of humanity out of the hospitals towards leading a healthy lifestyle and away from the label of a medical disease condition.
文摘The process of medicalization of abortion in Poland began when pregnancy termination procedures were legalized in 1956.The context in which that was possible is important:it happened under the communist rule as part of the Soviet bloc.The main goal of communism was to promote scientific approach to medicine and to eliminate popular folk medicine.The communist rule was also characterized by state feminism,which involved mass employment of women in industry and other occupations.The positive side to the changes was the fact that health care was free of charge.However,the system excluded the care of village healers and abortionists who were replaced by obstetricians-gynecologists,usually men.According to the official propaganda,an abortion that was not performed by a medical professional was dangerous for a woman’s health and could cause her death.Indeed,abortion-related mortality decreased,but the rate of abortion itself did not fall;it gradually increased.This is typical for countries with no free market,including communist ones,where access to contraceptive pills is very limited with abortion being the primary method of birth control.After the fall of communism in Poland,access to abortion was severely restricted;nevertheless,contraceptive pills and morning-after pills are available on prescription from pharmacies.The total fertility rate decreased in comparison to the period of communism and its broad access to abortion.Therefore,I maintain that the process of medicalization of abortion has not ended despite the partial disenfranchisement of women.
基金supported by the Jiangsu Provincial Department of Science and Technology Social Development Project(No.BE2020787)。
文摘Objectives Diabetes remains a major global health challenge in China.Artificial intelligence(AI)has demonstrated considerable potential in improving diabetes management.This study aimed to assess healthcare providers’perceptions regarding AI in diabetes care across China.Methods A cross-sectional survey was conducted using snowball sampling from November 12 to November 24,2024.We selected 514 physicians and nurses by a snowball sampling method from healthcare providers across 30 cities or provinces in China.The self-developed questionnaire comprised five sections with 19 questions assessing medical workers’demographic characteristics,AI-related experience and interest,awareness,attitudes,and concerns regarding AI in diabetes care.Statistical analysis was performed using t-test,analysis of variance(ANOVA),and linear regression.Results Among them,20.0%and 48.1%of respondents had participated in AI-related research and training,while 85.4%expressed moderate to high interest in AI training for diabetes care.Most respondents reported partial awareness of AI in diabetes care,and only 12.6%exhibited a comprehensive or substantial understanding.Attitudes toward AI in diabetes care were generally positive,with a mean score of 24.50±3.38.Nurses demonstrated significantly higher scores than physicians(P<0.05).Greater awareness,prior AI training experience,and higher interest in AI training in diabetes care were strongly associated with more positive attitudes(P<0.05).Key concerns regarding AI included trust issues from AI-clinician inconsistencies(77.2%),increased workload and clinical workflow disruptions(63.4%),and incomplete legal and regulatory frameworks(60.3%).Only 34.2%of respondents expressed concerns about job displacement,indicating general confidence in their professional roles.Conclusions While Chinese healthcare providers show moderate awareness of AI in diabetes care,their attitudes are generally positive,and they are considerably interested in future training.Tailored,role-specific AI training is essential for equitable and effective integration into clinical practice.Additionally,transparent,reliable,ethical AI models must be prioritized to alleviate practitioners’concerns.
基金supported by National Natural Science Foundation of China(Project approval number 82201825).
文摘Objective:To compare the clinical efficacy of mifepristone-misoprostol medical management versus surgical curettage for first-trimester missed miscarriage,and to establish evidence-based sonographic cutoff values predictive of incomplete abortion requiring surgical intervention.Methods:We retrospectively analyzed a cohort of 702 women diagnosed with first-trimester missed miscarriage between January 2020 and May 2023.Demographic characteristics and ultrasound parameters were systematically recorded.Receiver operating characteristic(ROC)curve analysis was performed to establish optimal sonographic cutoff values for predicting incomplete abortion requiring surgical intervention.Results:146 patients received medical treatment(mifepristone and misoprostol)and 556 underwent surgical curettage.At the 1-month follow-up,the medical group showed significantly greater endometrial thickness and longer postoperative bleeding duration than the surgical group(P<0.05).The menstrual volume reduction rate(23.56%)was significantly lower in the medical group than in the surgical group.The incomplete abortion rate was higher in the medical group(17.12%,25/146)than in the surgical group(2.88%,16/556).Among the medical group,14 patients(9.59%)required curettage due to incomplete abortion,while 11 cases resolved spontaneously after prolonged medication.ROC curve analysis identified two cut-off values indicating the need for surgical intervention:endometrial thickness>1.21 cm at 24 h post-medical abortion,and residual mass diameter>0.95 cm at 7 days post-medical abortion.Conclusions:Medical management of first-trimester missed miscarriage using mifepristone-misoprostol demonstrates comparable efficacy to surgical curettage.An endometrial thickness>1.21 cm at 24 h or residual tissue diameter>0.95 cm at 7 days post-medical abortion should prompt consideration of incomplete abortion.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金supported by the National Natural Science Innovative Research Group Project(61821002)the Frontier Funda-mental Research Program of Jiangsu Province for Leading Technology(BK20222002).
文摘The trajectory of human history is characterized by a persistent battle against disease.Over time,the field of medicine has transitioned from enigmatic witch doctors and herbal remedies to a sophisticated realm of contemporary medicine that includes fundamental medical and health sciences,clinical medicine,and public health.Nevertheless,the present phase of medical advancement encounters significant challenges,particularly in effectively translating basic research findings into practical applications in clinical and public health settings.Scientists increasingly collaborate with clinical experts to overcome these obstacles and address specific clinical issues by delving deeper into fundamental mechanisms.This collaborative effort has created a new interdisciplinary field:engineering medicine(EngMed),which focuses on addressing clinical and public health needs by integrating various scientific disciplines.This article discusses the definition,key tasks,significance,educational implications,and future trends in EngMed.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
文摘Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,advancing precision medicine by enabling integration and learning from diverse data sources.The exponential growth of high-dimensional healthcare data,encompassing genomic,transcriptomic,and other omics profiles,as well as radiological imaging and histopathological slides,makes this approach increasingly important because,when examined separately,these data sources only offer a fragmented picture of intricate disease processes.Multimodal deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic modeling,more robust disease characterization,and improved treatment decision-making.This review provides a comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis.We classify and examine important application domains,such as(1)radiology,where automated report generation and lesion detection are facilitated by image-text integration;(2)histopathology,where fusion models improve tumor classification and grading;and(3)multi-omics,where molecular subtypes and latent biomarkers are revealed through cross-modal learning.We provide an overview of representative research,methodological advancements,and clinical consequences for each domain.Additionally,we critically analyzed the fundamental issues preventing wider adoption,including computational complexity(particularly in training scalable,multi-branch networks),data heterogeneity(resulting from modality-specific noise,resolution variations,and inconsistent annotations),and the challenge of maintaining significant cross-modal correlations during fusion.These problems impede interpretability,which is crucial for clinical trust and use,in addition to performance and generalizability.Lastly,we outline important areas for future research,including the development of standardized protocols for harmonizing data,the creation of lightweight and interpretable fusion architectures,the integration of real-time clinical decision support systems,and the promotion of cooperation for federated multimodal learning.Our goal is to provide researchers and clinicians with a concise overview of the field’s present state,enduring constraints,and exciting directions for further research through this review.
基金Supported by the China Health Promotion Foundation Young Doctors'Research Foundation for Inflammatory Bowel Disease,the Taishan Scholars Program of Shandong Province,China,No.tsqn202306343National Natural Science Foundation of China,No.82270578.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.
基金supported by the National Key Research and Development Program of China(Grants No.2021YFC2902701,2021YFC2902100,2019YFC1805600,2018YFC1801800)the Fundamental Research Funds for the Central Universities(Grant No.2022QN1051)+1 种基金the Shandong Provincial Major Science and Technology Innovation Project(Grant No.2021CXGC011206),the Key Project of the National Natural Science Foundation of China(Grant No.52130402).
文摘Degrading ciprofloxacin(CIP)-polluted water has recently emerged as an urgent environmental issue.This study introduced mechanochemical treatment(MCT)as an innovative and underexplored approach for the degradation of CIP in water.The influence of various additives(CaO,Fe_(2)O_(3),SiO_(2),Al,and Fe)on CIP degradation efficiency was investigated.Additionally,six types of composite additives(Fe-CaO,Fe-Fe_(2)O_(3),Fe-SiO_(2),Fe-Al,Al-SiO_(2),and Al-CaO)were explored,with the composite of 20%Fe and 80%SiO_(2) exhibiting notable performance.The impacts of additive content,pH value,and co-existing ions on CIP degradation efficiency were investigated.Furthermore,the effectiveness of MCT in degrading other medical pollutants(norfloxacin,ofloxacin,and enrofloxacin)was verified.The transformations and changes in the crystal structure,oxidation state,microstructure,and morphology of the Fe-SiO_(2) composite additive were characterized using X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy techniques.This study proposed a sigmoid trend kinetic model(the Delogu model)that better elucidates the MCT process.Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature.This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.
文摘In the dynamic landscape of modern healthcare and precision medicine,the digital revolution is reshaping medical industries at an unprecedented pace,and traditional Chinese medicine(TCM)is no exception[1-4].The paper“From digits towards digitization:the past,present,and future of traditional Chinese medicine”by Academician&TCM National Master Qi WANG(王琦).
文摘This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems.
基金supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
文摘Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金funded by the National Natural Science Foundation of China(Grant Nos.:82222068,82070423,82270348,and 82173779)the Innovation Team and Talents Cultivation Pro-gram of National Administration of Traditional Chinese Medicine,China(Grant No:ZYYCXTD-D-202206)+1 种基金Fujian Province Science and Technology Project,China(Grant Nos.:2021J01420479,2021J02058,2022J011374,and 2022J02057)Fundamental Research Funds for the Chinese Central Universities,China(Grant No.:20720230070).
文摘Insect-derived traditional Chinese medicine(TCM)constitutes an essential component of TCM,with the earliest records found in“52 Bingfang”(Prescriptions of fifty-two diseases,which is one of the earliest Chinese medical prescriptions).
文摘In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.