As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and ...As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications.展开更多
In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be proces...In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.展开更多
Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics.Therefore,more attention has been paid to the forensics research of median filtering.In this paper,...Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics.Therefore,more attention has been paid to the forensics research of median filtering.In this paper,a median filtering forensics method based on quaternion convolutional neural network(QCNN)is proposed.The median filtering residuals(MFR)are used to preprocess the images.Then the output of MFR is expanded to four channels and used as the input of QCNN.In QCNN,quaternion convolution is designed that can better mix the information of different channels than traditional methods.The quaternion pooling layer is designed to evaluate the result of quaternion convolution.QCNN is proposed to features well combine the three-channel information of color image and fully extract forensics features.Experiments show that the proposed method has higher accuracy and shorter training time than the traditional convolutional neural network with the same convolution depth.展开更多
There are two main problems in the threshold denoising method based on wavelet transform. One is the difficulty of threshold selection, and the other is the inconsistence of the dip and curved events in the low signal...There are two main problems in the threshold denoising method based on wavelet transform. One is the difficulty of threshold selection, and the other is the inconsistence of the dip and curved events in the low signal-to-noise ratio (SNR) seismic data after denoising. In image denoising, multistage median filtering can preserve the details of the signal. So we proposed a denoising algorithm in wavelet transform domain based on multistage median filtering. Using this method the flat region and the edge region are differentiated by the difference between the maximum mid-value and the minimum mid-value, which preserves the details, thus improves the denoising effect. The simulation data and the real data processing results reveal that this method has stronger ability in separating signal from noise than that of the threshold denoising method.展开更多
The image contour is segmented into lines, arcs and smooth curves by median filtering of extended direction code. Based on this segmentation, a set of new local invariant features are proposed to recognize partially o...The image contour is segmented into lines, arcs and smooth curves by median filtering of extended direction code. Based on this segmentation, a set of new local invariant features are proposed to recognize partially occluded objects, which is more reasonable compared with conventional corner features. The matching results of some typical examples shows that these features are robust ,effective in recognition.展开更多
Suppose thatx=|x(n)|n∈? is a sequence of real numbers. For eachp∈?,x p =|x p (n)|n∈?is the resulting sequence ofx throughp times median filterings with window 2k+1. It is proved that whenp→∞, bothx (2p) andx(2 p}...Suppose thatx=|x(n)|n∈? is a sequence of real numbers. For eachp∈?,x p =|x p (n)|n∈?is the resulting sequence ofx throughp times median filterings with window 2k+1. It is proved that whenp→∞, bothx (2p) andx(2 p}-1) are convergent. Thus the problem of convergence of the median filters of infinite-length sequences is completely solved.展开更多
An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notifica...An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.展开更多
In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
According to the B-spline convolution mask, first, the contrast sensitiveness (CS) is computed and then is viewed as a noise sensitiveness coeficient (NSC) to adaptively determine a noise-recognized threshold valu...According to the B-spline convolution mask, first, the contrast sensitiveness (CS) is computed and then is viewed as a noise sensitiveness coeficient (NSC) to adaptively determine a noise-recognized threshold value. Based on the noise density function (NDF) in a 3×3 window, the filtering window size is adaptively adjusted, and then a median filter is used to eliminate the noise-marked pixels. The experiment results show that the proposed algorithm can preserve image detail information well and effectively remove the noises, particularly the impulse noises that is also called salt-and-pepper noises superimposed on the computed tomography (CT) and magnetic resonance imaging (MRI) medical images.展开更多
Abstract--When the circuits in which electronic products are fitted are disturbed by various interrupting signals, wave distortions occur to the normal voltage signals of these circuits. These wave distortions influen...Abstract--When the circuits in which electronic products are fitted are disturbed by various interrupting signals, wave distortions occur to the normal voltage signals of these circuits. These wave distortions influence the normal operation and life cycle of electronic products. To eliminate the harmful effects of interrupting signals on electronic products, in this paper, a digital filter algorithm based on morphological lifting scheme and median filter (MLS-MF), which will be used to filter various interrupting signals existing in the circuits in which electronic products are fitted, is proposed. A variety of interrupting sig- nals have been included in simulation studies, and simulation results have demonstrated the effectiveness and feasibility of the proposed digital filter algorithm in high frequency continuous interference, random background noise and damped oscillatory transient interference filter. Index Terms--Digital filter, lifting scheme, median filter, mor- phology.展开更多
Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. I...Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter (ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed filter.展开更多
Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish wei...Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish weight function combined with iterative algorithm to eliminate noises. In IAMF filter process, because the noise sixes do not participate in the computation, they do not influence the normal points in the image, therefore IAMF can retain the detail well, maintain the good clarity after processing image, and simultaneously reduce the computation. Experiments showed that IAMF have ideal denoising effect for the images polluted by the impulse noises; especially when the noise rates are more than 0.5, IAMF is mote prominent, even when the noise rotes are more than 0.9, IAMF can achieve a satisfactory results.展开更多
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure...Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.展开更多
In this paper we mainly discussed some problems of 2D morpnological and median filters .The differences between 1D and 2D morphological and median filters arc also described. It can be seen that many propcrties of ID ...In this paper we mainly discussed some problems of 2D morpnological and median filters .The differences between 1D and 2D morphological and median filters arc also described. It can be seen that many propcrties of ID finers arc invalid for 2D filters. Som cxamples and cxpcriments are gived to show these problems.展开更多
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor...Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.展开更多
The rapid development in the information technology field has introduced digital watermark technologies as a solution to prevent unauthorized copying and redistribution of data.This article introduces a self-embedded ...The rapid development in the information technology field has introduced digital watermark technologies as a solution to prevent unauthorized copying and redistribution of data.This article introduces a self-embedded image verification and integrity scheme.The images are firstly split into dedicated segments of the same block sizes.Then,different Analytic Beta-Wavelet(ABW)orthogonal filters are utilized for embedding a self-segment watermark for image segment using a predefined method.ABW orthogonal filter coefficients are estimated to improve image reconstruction under different block sizes.We conduct a comparative study comparing the watermarked images using three kinds of ABW filters for block sizes 64×64,128×128,and 256×256.We embed the watermark using the ABW-based image watermarking method in the 2-level middle frequency sub-bands of the ABW digital image coefficients.The imperceptibility and robustness of the ABW-based image watermarking method image is evaluated based on the Peak Signal to Noise Ratio(PSNR)and Correlation coefficient values.From the implementation results,we came to know that this ABW-based image watermarking method can withstand many image manipulations compared to other existing methods.展开更多
In order to improve the performance of voice conversion, the fundamental frequency (F0) transformation methods are investigated, and an efficient F0 transformation algorithm is proposed. First, unlike the traditiona...In order to improve the performance of voice conversion, the fundamental frequency (F0) transformation methods are investigated, and an efficient F0 transformation algorithm is proposed. First, unlike the traditional linear transformation methods, the relationships between F0s and spectral parameters are explored. In each component of the Gaussian mixture model (GMM), the F0s are predicted from the converted spectral parameters using the support vector regression (SVR) method. Then, in order to reduce the over- smoothing caused by the statistical average of the GMM, a mixed transformation method combining SVR with the traditional mean-variance linear (MVL) conversion is presented. Meanwhile, the adaptive median filter, prevalent in image processing, is adopted to solve the discontinuity problem caused by the frame-wise transformation. Objective and subjective experiments are carried out to evaluate the performance of the proposed method. The results demonstrate that the proposed method outperforms the traditional F0 transformation methods in terms of the similarity and the quality.展开更多
Rail fastener positioning method has high requirements for image quality and positioning accuracy.Therefore,a rail fastener positioning method based on gray mutation is proposed.Firstly,the image is denoised by an imp...Rail fastener positioning method has high requirements for image quality and positioning accuracy.Therefore,a rail fastener positioning method based on gray mutation is proposed.Firstly,the image is denoised by an improved median filter.Then,according to the characteristics of image frequency domain,the image is decomposed by wavelet transfrom to extract low-frequency component,and the low-frequency component is filtered and processed by gamma transformation to reduce the influence of natural environment factors on image quality.After that,according to the change rule of gray-scale values of different regions in the image,the gray-scale mutation in column and line directions of the image is statistically analyzed,and then the rail surface and the sleeper are located.Finally,the fastener area is accurately located by using the position relationship of the rail surface,the sleeper and the fastener in the image.The experimental results show that the positioning accuracy of the proposed method is 93.19%,which can quickly and effectively locate the fastener region,and has strong environmental adaptability,robustness and practicability.展开更多
Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated c...Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated cervical cancer diagnosis using automated methods are necessary.This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis(ODLIM-CCD)using pap smear images.The proposed ODLIM-CCD technique incorporates median filtering(MF)based pre-processing to discard the noise and Otsu model based segmentation process.Besides,deep convolutional neural network(DCNN)based Inception with Residual Network(ResNet)v2 model is utilized for deriving the feature vectors.Moreover,swallow swarm optimization(SSO)based hyperparameter tuning process is carried out for the optimal selection of hyperparameters.Finally,recurrent neural network(RNN)based classification process is done to determine the presence of cervical cancer or not.In order to showcase the improved diagnostic performance of the ODLIM-CCD technique,a series of simulations occur on benchmark test images and the outcomes highlighted the improved performance over the recent approaches with a superior accuracy of 0.9661.展开更多
Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane im...Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane image information,and then extract the path through visual servo. The whole system can be divided into seven modules: micro control unit( MCU) processor module,image acquisition module,debugging module,motor drive module,servo drive module,speed sensor module,and voltage conversion module.In image pre-processing part,there is an introduction of binarization processing and the median filtering to strengthen the image information. About recognition algorithm,three key variables which are changed in the movement state are discussed and there are also many auxiliary algorithms that help to improve the path recognition.The experiment can verify that the whole system can accurately abstract the black guide lines from the white track and make the robot moving fast and stable by following the road parameters and conditions.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+2 种基金the Postgraduate Research and Innovation Project of Hunan Province(No.CX2018B447)the Postgraduate Science and Technology Innovation Foundation of Cent ral South University of Forestry and Technology(20183027)the Key Laboratory for Dig ital Dongting Lake Basin of Hunan Province.
文摘As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications.
基金The work was supported in part by the Natural Science Foundation of China under Grants(Nos.61772281,61502241,61272421,61232016,61402235 and 61572258)in part by the Natural Science Foundation of Jiangsu Province,China under Grant BK20141006+1 种基金in part by the Natural Science Foundation of the Universities in Jiangsu Province under Grant 14KJB520024the PAPD fund and the CICAEET fund.
文摘In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.
基金This work was supported in part by the Natural Science Foundation of China under Grants(Nos.61702235,61772281,U1636219,U1636117,61702235,61502241,61272421,61232016,61402235 and 61572258)in part by the National Key R\&D Program of China(Grant Nos.2016YFB0801303 and 2016QY 01W0105)+2 种基金in part by the plan for Scientific Talent of Henan Province(Grant No.2018JR0018)in part by the Natural Science Foundation of Jiangsu Province,China under Grant BK20141006in part by the Natural Science Foundation of the Universities in Jiangsu Province under Grant 14KJB520024,the PAPD fund and the CICAEET fund.
文摘Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics.Therefore,more attention has been paid to the forensics research of median filtering.In this paper,a median filtering forensics method based on quaternion convolutional neural network(QCNN)is proposed.The median filtering residuals(MFR)are used to preprocess the images.Then the output of MFR is expanded to four channels and used as the input of QCNN.In QCNN,quaternion convolution is designed that can better mix the information of different channels than traditional methods.The quaternion pooling layer is designed to evaluate the result of quaternion convolution.QCNN is proposed to features well combine the three-channel information of color image and fully extract forensics features.Experiments show that the proposed method has higher accuracy and shorter training time than the traditional convolutional neural network with the same convolution depth.
基金supported by the National Natural Science Foundation of China(61272120)the Young Scholars Plan Project of Xi'an University of Posts and Telecommunications(ZL2012-11)
文摘There are two main problems in the threshold denoising method based on wavelet transform. One is the difficulty of threshold selection, and the other is the inconsistence of the dip and curved events in the low signal-to-noise ratio (SNR) seismic data after denoising. In image denoising, multistage median filtering can preserve the details of the signal. So we proposed a denoising algorithm in wavelet transform domain based on multistage median filtering. Using this method the flat region and the edge region are differentiated by the difference between the maximum mid-value and the minimum mid-value, which preserves the details, thus improves the denoising effect. The simulation data and the real data processing results reveal that this method has stronger ability in separating signal from noise than that of the threshold denoising method.
文摘The image contour is segmented into lines, arcs and smooth curves by median filtering of extended direction code. Based on this segmentation, a set of new local invariant features are proposed to recognize partially occluded objects, which is more reasonable compared with conventional corner features. The matching results of some typical examples shows that these features are robust ,effective in recognition.
基金Project supported by the National Natural Science Foundation of China (Grant No. 16971047)
文摘Suppose thatx=|x(n)|n∈? is a sequence of real numbers. For eachp∈?,x p =|x p (n)|n∈?is the resulting sequence ofx throughp times median filterings with window 2k+1. It is proved that whenp→∞, bothx (2p) andx(2 p}-1) are convergent. Thus the problem of convergence of the median filters of infinite-length sequences is completely solved.
文摘An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金supported by Foundation of 11th Five-year Plan for Key Construction Academic Subject (Optics) of Hunan Province,PRC, Outstanding Young Scientific Research Fund of Hunan Provincial Education Department, PRC (No. 09B071)Scientific Research Fund of Hunan Provincial Education Department, PRC(No. 06C581)
文摘According to the B-spline convolution mask, first, the contrast sensitiveness (CS) is computed and then is viewed as a noise sensitiveness coeficient (NSC) to adaptively determine a noise-recognized threshold value. Based on the noise density function (NDF) in a 3×3 window, the filtering window size is adaptively adjusted, and then a median filter is used to eliminate the noise-marked pixels. The experiment results show that the proposed algorithm can preserve image detail information well and effectively remove the noises, particularly the impulse noises that is also called salt-and-pepper noises superimposed on the computed tomography (CT) and magnetic resonance imaging (MRI) medical images.
基金supported by the Research Project of Inner Mongolia University of Finance and Economics(KY135)the National Natural Science Foundation of China(61563038)
文摘Abstract--When the circuits in which electronic products are fitted are disturbed by various interrupting signals, wave distortions occur to the normal voltage signals of these circuits. These wave distortions influence the normal operation and life cycle of electronic products. To eliminate the harmful effects of interrupting signals on electronic products, in this paper, a digital filter algorithm based on morphological lifting scheme and median filter (MLS-MF), which will be used to filter various interrupting signals existing in the circuits in which electronic products are fitted, is proposed. A variety of interrupting sig- nals have been included in simulation studies, and simulation results have demonstrated the effectiveness and feasibility of the proposed digital filter algorithm in high frequency continuous interference, random background noise and damped oscillatory transient interference filter. Index Terms--Digital filter, lifting scheme, median filter, mor- phology.
文摘Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter (ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed filter.
基金supported by Shandong Prvince Natural Science Foundation(Y2008G31)
文摘Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish weight function combined with iterative algorithm to eliminate noises. In IAMF filter process, because the noise sixes do not participate in the computation, they do not influence the normal points in the image, therefore IAMF can retain the detail well, maintain the good clarity after processing image, and simultaneously reduce the computation. Experiments showed that IAMF have ideal denoising effect for the images polluted by the impulse noises; especially when the noise rates are more than 0.5, IAMF is mote prominent, even when the noise rotes are more than 0.9, IAMF can achieve a satisfactory results.
基金Supported by the National Natural Science Foundation of China(61273346)the National Defense Key Fundamental Research Program of China(A20130010)the Program for the Fundamental Research of Beijing Institute of Technology(2016CX02010)
文摘Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible.
文摘In this paper we mainly discussed some problems of 2D morpnological and median filters .The differences between 1D and 2D morphological and median filters arc also described. It can be seen that many propcrties of ID finers arc invalid for 2D filters. Som cxamples and cxpcriments are gived to show these problems.
基金supported by the National Key Research and Development Project of China(No.2023YFB3709605)the National Natural Science Foundation of China(No.62073193)the National College Student Innovation Training Program(No.202310422122)。
文摘Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image.
基金This research was funded by Deanship of Scientific Research,Taif University Researches Supporting Project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘The rapid development in the information technology field has introduced digital watermark technologies as a solution to prevent unauthorized copying and redistribution of data.This article introduces a self-embedded image verification and integrity scheme.The images are firstly split into dedicated segments of the same block sizes.Then,different Analytic Beta-Wavelet(ABW)orthogonal filters are utilized for embedding a self-segment watermark for image segment using a predefined method.ABW orthogonal filter coefficients are estimated to improve image reconstruction under different block sizes.We conduct a comparative study comparing the watermarked images using three kinds of ABW filters for block sizes 64×64,128×128,and 256×256.We embed the watermark using the ABW-based image watermarking method in the 2-level middle frequency sub-bands of the ABW digital image coefficients.The imperceptibility and robustness of the ABW-based image watermarking method image is evaluated based on the Peak Signal to Noise Ratio(PSNR)and Correlation coefficient values.From the implementation results,we came to know that this ABW-based image watermarking method can withstand many image manipulations compared to other existing methods.
基金The National Natural Science Foundation of China(No. 60975017)the Natural Science Foundation of Guangdong Province (No. 10252800001000001)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (No. 10KJB510005)
文摘In order to improve the performance of voice conversion, the fundamental frequency (F0) transformation methods are investigated, and an efficient F0 transformation algorithm is proposed. First, unlike the traditional linear transformation methods, the relationships between F0s and spectral parameters are explored. In each component of the Gaussian mixture model (GMM), the F0s are predicted from the converted spectral parameters using the support vector regression (SVR) method. Then, in order to reduce the over- smoothing caused by the statistical average of the GMM, a mixed transformation method combining SVR with the traditional mean-variance linear (MVL) conversion is presented. Meanwhile, the adaptive median filter, prevalent in image processing, is adopted to solve the discontinuity problem caused by the frame-wise transformation. Objective and subjective experiments are carried out to evaluate the performance of the proposed method. The results demonstrate that the proposed method outperforms the traditional F0 transformation methods in terms of the similarity and the quality.
基金National Natural Science Foundation of China(Nos.61616202,61461203)Ministry of Education Innovation Team Development Plan(No.IRT_16R36)Plateau Information Engineering and Control Key Practice Laboratory Open Project Fund of Gansu Province(No.201611105)。
文摘Rail fastener positioning method has high requirements for image quality and positioning accuracy.Therefore,a rail fastener positioning method based on gray mutation is proposed.Firstly,the image is denoised by an improved median filter.Then,according to the characteristics of image frequency domain,the image is decomposed by wavelet transfrom to extract low-frequency component,and the low-frequency component is filtered and processed by gamma transformation to reduce the influence of natural environment factors on image quality.After that,according to the change rule of gray-scale values of different regions in the image,the gray-scale mutation in column and line directions of the image is statistically analyzed,and then the rail surface and the sleeper are located.Finally,the fastener area is accurately located by using the position relationship of the rail surface,the sleeper and the fastener in the image.The experimental results show that the positioning accuracy of the proposed method is 93.19%,which can quickly and effectively locate the fastener region,and has strong environmental adaptability,robustness and practicability.
文摘Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images.Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist.Therefore,automated cervical cancer diagnosis using automated methods are necessary.This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis(ODLIM-CCD)using pap smear images.The proposed ODLIM-CCD technique incorporates median filtering(MF)based pre-processing to discard the noise and Otsu model based segmentation process.Besides,deep convolutional neural network(DCNN)based Inception with Residual Network(ResNet)v2 model is utilized for deriving the feature vectors.Moreover,swallow swarm optimization(SSO)based hyperparameter tuning process is carried out for the optimal selection of hyperparameters.Finally,recurrent neural network(RNN)based classification process is done to determine the presence of cervical cancer or not.In order to showcase the improved diagnostic performance of the ODLIM-CCD technique,a series of simulations occur on benchmark test images and the outcomes highlighted the improved performance over the recent approaches with a superior accuracy of 0.9661.
基金National Natural Science Foundations of China(Nos.61272097,61305014)Natural Science Foundation of Shanghai,China(No.13ZR1455200)+6 种基金Innovation Programs of Shanghai Municipal Education Commission,China(Nos.12ZZ182,14ZZ156)Funding Scheme for Training Young Teachers in Shanghai Colleges,China(No.ZZGJD13006)Key Support Project of Shanghai Science and Technology Committee,China(No.13510501400)Research Startup Foundation of Shanghai University of Engineering Science,China(No.2013-13)The Connotative Construction Projects of Shanghai Local Colleges in the 12th Five-Year,China(No.nhky-2012-10)Shandong Province Young and Middle-Aged Scientists Research Awards Fund,China(No.BS2013DX021)Shandong Academy Young Scientists Fund Project,China(No.2013QN037)
文摘Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane image information,and then extract the path through visual servo. The whole system can be divided into seven modules: micro control unit( MCU) processor module,image acquisition module,debugging module,motor drive module,servo drive module,speed sensor module,and voltage conversion module.In image pre-processing part,there is an introduction of binarization processing and the median filtering to strengthen the image information. About recognition algorithm,three key variables which are changed in the movement state are discussed and there are also many auxiliary algorithms that help to improve the path recognition.The experiment can verify that the whole system can accurately abstract the black guide lines from the white track and make the robot moving fast and stable by following the road parameters and conditions.