In this study,an efficient stabilizer material for cadmium(Cd^(2+))treatment was successfully prepared by simply co-milling olivine with magnesite.Several analyticalmethods including XRD,TEM,SEM and FTIR,combined with...In this study,an efficient stabilizer material for cadmium(Cd^(2+))treatment was successfully prepared by simply co-milling olivine with magnesite.Several analyticalmethods including XRD,TEM,SEM and FTIR,combined with theoretical calculations(DFT),were used to investigate mechanochemical interfacial reaction between twominerals,and the reaction mechanism of Cd removal,with ion exchange between Cd^(2+)and Mg^(2+)as the main pathway.A fixation capacity of Cd^(2+)as high as 270.61 mg/g,much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite,has been obtained at optimized conditions,with a neutral pH value of the solution after treatment to allow its direct discharge.The as-proposed Mg-based stabilizer with various advantages such as cost benefits,green feature etc.,will boosts the utilization efficiency of naturalminerals over the elaborately prepared adsorbents.展开更多
The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately ...The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately explained the thermal and mechanochemical synthesis of Ag from Ag2O+ghraphite mixture.The process kinetics was investigated using the same approach for milled and unmilled samples.The results show that the Avrami exponent of mechanochemical reduction is higher than that of high temperature thermal reduction.Also,the mechanisms of nuclei growth in thermal and mechanochemical reduction are diffusion controlled and interface controlled,respectively.展开更多
Powder iron monosilicide with certain structure exhibits magnetic properties and can be used as an alloying additive in the production of electrical steels and silicon alloys with special physical and chemical propert...Powder iron monosilicide with certain structure exhibits magnetic properties and can be used as an alloying additive in the production of electrical steels and silicon alloys with special physical and chemical properties. From this point of view, development of the energy-saving technology for receiving such a valuable alloying agent with the disposal of secondary waste is an urgent task. For this purpose, the method of joint aluminothermic reduction of preliminary mechanically activated metallurgical waste is offered. Recently, a method for combining the self-propagating high-temperature synthesis and preliminary mechanical activation for obtaining metal powders with certain phase composition and structure is considered as one of the efficient ones. As the initial materials for obtaining iron monosilicide, the waste (or converter) slags of the Alaverdi copper-smelting plant and molybdenum slags of the Yerevan Pure Iron Plant are used. Besides the mentioned slags, NaNO<sub>3</sub> and CaO are added. Properties and structure of the received silicide depend on the contents, quantity of components, and the mass relation of two wastes in the burden. Therefore, the processes of structure formation of the iron monosilicide received from metallurgical waste are investigated. Studies have shown that the best results are obtained in case of waste and molybdenum slag relation of 4:1, when the 60-minute grinding in the vibromill leads to a significant increase in the mechanical activation of the burden. At this relation of FeO and SiO2, a condition is created for receiving iron monosilicide showing magnetic properties. On the whole, those transformations lead to a decrease in the reaction activation power of the interacting substances, an increase of the reactivity capacities, as well as to a new original course of reactions and new modified materials.展开更多
The meticulous regulation of mechanochemical activation in the depths of tissue using non-invasive ultrasound technology harbors significant potential to enhance our comprehension of core biomedical sciences and to tr...The meticulous regulation of mechanochemical activation in the depths of tissue using non-invasive ultrasound technology harbors significant potential to enhance our comprehension of core biomedical sciences and to transform the landscape of disease treatment methodologies[1].Despite this promise,the scientific community has yet to uncover a mechanoresponsive materials system that is guided by robust theoretical frameworks and characterized by clearly defined ultrasound activation parameters.Such a system would not only deepen our understanding of the intricate interplay between mechanical forces and biological responses but also pave the way for innovative therapeutic strategies that could be precisely controlled and tailored to individual patient needs.The exploration of this uncharted territory stands as a beacon,calling for interdisciplinary collaboration to unlock the full potential of ultrasound in medical science and treatment paradigms.展开更多
基金supported by the Key 491 R&D Programof Hubei Province(No.2022BCA083).
文摘In this study,an efficient stabilizer material for cadmium(Cd^(2+))treatment was successfully prepared by simply co-milling olivine with magnesite.Several analyticalmethods including XRD,TEM,SEM and FTIR,combined with theoretical calculations(DFT),were used to investigate mechanochemical interfacial reaction between twominerals,and the reaction mechanism of Cd removal,with ion exchange between Cd^(2+)and Mg^(2+)as the main pathway.A fixation capacity of Cd^(2+)as high as 270.61 mg/g,much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite,has been obtained at optimized conditions,with a neutral pH value of the solution after treatment to allow its direct discharge.The as-proposed Mg-based stabilizer with various advantages such as cost benefits,green feature etc.,will boosts the utilization efficiency of naturalminerals over the elaborately prepared adsorbents.
文摘The kinetics of isothermal reduction of Ag2O with graphite under argon atmosphere for a non-activated sample and mechanically activated sample was investigated.It is found that Johnson-Mehl-Avrami model appropriately explained the thermal and mechanochemical synthesis of Ag from Ag2O+ghraphite mixture.The process kinetics was investigated using the same approach for milled and unmilled samples.The results show that the Avrami exponent of mechanochemical reduction is higher than that of high temperature thermal reduction.Also,the mechanisms of nuclei growth in thermal and mechanochemical reduction are diffusion controlled and interface controlled,respectively.
文摘Powder iron monosilicide with certain structure exhibits magnetic properties and can be used as an alloying additive in the production of electrical steels and silicon alloys with special physical and chemical properties. From this point of view, development of the energy-saving technology for receiving such a valuable alloying agent with the disposal of secondary waste is an urgent task. For this purpose, the method of joint aluminothermic reduction of preliminary mechanically activated metallurgical waste is offered. Recently, a method for combining the self-propagating high-temperature synthesis and preliminary mechanical activation for obtaining metal powders with certain phase composition and structure is considered as one of the efficient ones. As the initial materials for obtaining iron monosilicide, the waste (or converter) slags of the Alaverdi copper-smelting plant and molybdenum slags of the Yerevan Pure Iron Plant are used. Besides the mentioned slags, NaNO<sub>3</sub> and CaO are added. Properties and structure of the received silicide depend on the contents, quantity of components, and the mass relation of two wastes in the burden. Therefore, the processes of structure formation of the iron monosilicide received from metallurgical waste are investigated. Studies have shown that the best results are obtained in case of waste and molybdenum slag relation of 4:1, when the 60-minute grinding in the vibromill leads to a significant increase in the mechanical activation of the burden. At this relation of FeO and SiO2, a condition is created for receiving iron monosilicide showing magnetic properties. On the whole, those transformations lead to a decrease in the reaction activation power of the interacting substances, an increase of the reactivity capacities, as well as to a new original course of reactions and new modified materials.
文摘The meticulous regulation of mechanochemical activation in the depths of tissue using non-invasive ultrasound technology harbors significant potential to enhance our comprehension of core biomedical sciences and to transform the landscape of disease treatment methodologies[1].Despite this promise,the scientific community has yet to uncover a mechanoresponsive materials system that is guided by robust theoretical frameworks and characterized by clearly defined ultrasound activation parameters.Such a system would not only deepen our understanding of the intricate interplay between mechanical forces and biological responses but also pave the way for innovative therapeutic strategies that could be precisely controlled and tailored to individual patient needs.The exploration of this uncharted territory stands as a beacon,calling for interdisciplinary collaboration to unlock the full potential of ultrasound in medical science and treatment paradigms.