期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characterisation, Analysis and Design of Hydrated Cement Treated Crushed Rock Base as a Road Base Material in Western Australia
1
作者 Peerapong Jitsangiam H. R. Nikraz K. Siripun S. Chummuneerat 《Journal of Civil Engineering and Architecture》 2012年第5期586-593,共8页
Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. T... Hydrated Cement Treated Crushed Rock Base (HCTCRB) is widely used as a base course in Western Australian pavements. HCTCRB has been designed and used as a basis for empirical approaches and in empirical practices. These methods are not all-encompassing enough to adequately explain the behaviour of HCTCRB in the field. Recent developments in mechanistic approaches have proven more reliable in the design and analysis of pavement, making it possible to more effectively document the characteristics of HCTCRB. The aim of this study was to carry out laboratory testing to assess the mechanical characteristics of HCTCRB. Conventional triaxial tests and repeated load triaxial tests (RLT tests) were performed. Factors affecting the performance of HCTCRB, namely hydration periods and the amount of added water were also investigated. It was found that the shear strength parameters of HCTCRB were 177 kPa for cohesion (c) and 42~ for the internal friction angle (~). The hydration period, and the water added in this investigation affected the performance of HCTCRB. However, the related trends associated with such factors could not be assessed. All HCTCRB samples showed stress-dependency behaviour. Based on the stress stages of this experiment, the resilient modulus values of HCTCRB ranged from 300 MPa to 1100 MPa. CIRCLY, a computer program based on the multi-layer elastic theory was used in the mechanistic approach to pavement design and analysis, to determine the performance of a typical pavement model using HCTCRB as a base course layer. The mechanistic pavement design parameters for HCTCRB as a base course material were then introduced. The analysis suggests that the suitable depth for HCTCRB as a base layer for WA roads is at least 185 mm for the design equivalent standard axle (ESA) of 10 million. 展开更多
关键词 Hydrated cement treated crushed rock base (HCTCRB) base course pavement repeated load triaxial (RLT) test mechanistic pavement analysis and design.
在线阅读 下载PDF
Local calibration of JPCP transverse cracking and IRI models using maximum likelihood estimation
2
作者 Rahul Raj Singh Syed Waqar Haider James Bryce 《Journal of Road Engineering》 2024年第4期433-445,共13页
The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Lea... The calibration of transfer functions is essential for accurate pavement performance predictions in the PavementME design. Several studies have used the least square approach to calibrate these transfer functions. Least square is a widely used simplistic approach based on certain assumptions. Literature shows that these least square approach assumptions may not apply to the non-normal distributions. This study introduces a new methodology for calibrating the transverse cracking and international roughness index(IRI) models in rigid pavements using maximum likelihood estimation(MLE). Synthetic data for transverse cracking, with and without variability, are generated to illustrate the applicability of MLE using different known probability distributions(exponential,gamma, log-normal, and negative binomial). The approach uses measured data from the Michigan Department of Transportation's(MDOT) pavement management system(PMS) database for 70 jointed plain concrete pavement(JPCP) sections to calibrate and validate transfer functions. The MLE approach is combined with resampling techniques to improve the robustness of calibration coefficients. The results show that the MLE transverse cracking model using the gamma distribution consistently outperforms the least square for synthetic and observed data. For observed data, MLE estimates of parameters produced lower SSE and bias than least squares(e.g., for the transverse cracking model, the SSE values are 3.98 vs. 4.02, and the bias values are 0.00 and-0.41). Although negative binomial distribution is the most suitable fit for the IRI model for MLE, the least square results are slightly better than MLE. The bias values are-0.312 and 0.000 for the MLE and least square methods. Overall, the findings indicate that MLE is a robust method for calibration, especially for non-normally distributed data such as transverse cracking. 展开更多
关键词 mechanistic empirical pavement design guide Transfer function Maximum likelihood estimation Transverse cracking International roughness index Rigid pavements
在线阅读 下载PDF
Assessing dynamic modulus properties for typical asphalt mixtures in Jiangsu
3
作者 王昊鹏 杨军 +1 位作者 周文章 陈先华 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期99-105,共7页
To investigate the validity of two dynamic modulus predictive models( Witczak 1-37 A viscosity-based model and Witczak 1-40 D shear modulus-based model) in the context of Jiangsu, and evaluate the effect of differen... To investigate the validity of two dynamic modulus predictive models( Witczak 1-37 A viscosity-based model and Witczak 1-40 D shear modulus-based model) in the context of Jiangsu, and evaluate the effect of different mixture design variables( aggregate gradations, binder type, and volumetric properties) on dynamic modulus E*, asphalt mixtures commonly used in the local surface layer, including Sup-13 and AC-13, are prepared in the laboratory and their dynamic modulus E*values are predicted based on the above mentioned models. The corresponding asphalt tests, including viscosity and dynamic shear modulus tests, are also carried out to obtain the prediction model parameters. The test results showthat binder type and asphalt content have a significant impact on dynamic modulus.There is a good correlation between the E*values based on above two predictive models and the measured E*, while a relatively lower bias can be expected from Witczak 1-37 A model. The test results can be used for the calibration of dynamic modulus with higher accuracy. 展开更多
关键词 dynamic modulus prediction models asphalt pavement Witczak 1-37A Witczak 1-40D mechanistic empirical pavement design guide
在线阅读 下载PDF
Soil Subgrade’s Characterization and Classification of Thies (Senegal, West Africa) on a Radius of 2.5 Kilometers along Five Roads 被引量:1
4
作者 E.H.B.M. Niakhate Séni Tamba +2 位作者 Makhaly Ba Adama Dione Issa Ndoye 《Geomaterials》 2016年第1期1-17,共17页
This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a... This article explains the results of a study conducted on the characterizations of subgrade soils in the region of Thies. The road platforms are mainly composed of a background soil, which is generally overlapped by a surface layer that plays two roles. Firstly, it protects the soil structure, ensures the leveling, and facilitates the movement of vehicles. Secondly, it brings harmony in the mechanistic characteristics of the materials that compose the soil while improving the long-term life force. The methodology consisted in taking samples of subgrade soil along the roads all over the region of Thies in a 5 km diameter span. The identification tests allowed the Thies-Tivaoune, Thies-Khombole and Thies-Noto axes are characterized by tight sands, poorly graded size. While Thies Pout-axis is characteristic of severe solid particle size and spread well graded and serious to spread and well graded particle size. Finally the Thies-Montrolland axis is characterized by severe to very tight particle size and graduated to spread and serious and well graded particle size. The specific gravity values found Proctor test shows the presence of sand, sandy laterite and laterite. In the target area, polished soils of the A-3 type according to the AASHTO classification system are the most represented with 60%, followed by the A-2-6 type 25%, and the A-2-4 type with 9%, which are typical of gravel, clay, and silty sands. Soils of the A-1-b type (2%) typical of roc fragments, sands and clay are also represented. Polished sands of the A-3 type have a better efficiency on road infrastructures than other types of soil listed above. Finally, we’ve also noted the presence of soils of the A-2-7 and A-4 types with the low percentage of 2%. Subgrade soils of class S4 are the most represented with 58%, followed by those of class S5 with 42%. Samples of the Thies-Montrolland road have a claylike plasticity (CL or CH group), while those of the Thies-Pout road belong to the ML or OL and CL or OL groups with a tendency mostly directed to the CL or OL group. All these results confirm the very nature of soils on the two roads and put the light on the presence of lateritic materials with certain plasticity. 展开更多
关键词 Subgrade Soil mechanistic pavement design Arc GIS AASHTO CBR Resilient Modulus
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部