期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Universal Mechanism Modeling Method in Virtual Assembly Environment 被引量:2
1
作者 LIU Jianhua ZHANG Zhixian LIU Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1105-1114,共10页
Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have n... Motion simulation and performance analysis of mechanism are important methods for analyzing assembly quality after finishing assembly simulation in virtual assembly environment. However, most simulation systems have no function of mechanism motion simulation due to the randomicity of mechanism and lack of universal mechanism modeling method. In order to realize the simulation of any mechanism after finishing assembly simulation in a virtual environment, a new universal mechanism modeling method is presented. Two main models are contained in the mechanism model: information model and mathematical model. Firstly, the information model of mechanism is proposed to describe the data structure of mechanism which contains bottom geometry data, information of constraint, link, kinematic pair and physical data. Because the object of mechanism simulation is the assembly, which is assembled during the process of assembly simulation, the information of mechanism can be obtained automatically through mechanism automatic search method. Secondly, mathematical model of mechanism is presented. The mathematical model uses mathematical method to express the mechanism. In order to realize the automatic expression of any random mechanism, basic constraint library is presented, consequently random mechanism can be described based on the basic constraint library. Finally, two examples are introduced to validate the method in the prototype system named VAPP(Virtual Assembly Process Planning). The validation result shows that the mechanism modeling provides a universal modeling method for mechanism motion simulation in virtual assembly environment. This research has important effect on the development both of mechanism motion simulation and virtual assembly. 展开更多
关键词 virtual assembly mechanism modeling motion simulation constraint library information model mathematical model
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
2
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Hybrid prediction model for strip width based on improved mechanism and data-driven model
3
作者 Jia-liang Wang Jing-cheng Wang +2 位作者 Chao-bo Chen Kang-bo Dang Song Gao 《Journal of Iron and Steel Research International》 2025年第3期720-732,共13页
Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc... Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control. 展开更多
关键词 Hot-rolled strip Steel width Artificial neural network mechanism model Hybrid model
原文传递
Study on Microscopic Interfacial Mechanical Properties of the Gecko's Foot Adhesion Mechanism
4
作者 Yilin Su Xuyan Hou +3 位作者 Kaiwei Li Zhe Wang Lei Ren Luquan Ren 《Journal of Bionic Engineering》 2025年第4期1776-1787,共12页
The gecko's feet possess unique microstructures that enable strong adhesive forces when interacting with various surfaces.Understanding the interfacial forces generated by these microstructures is crucial for deci... The gecko's feet possess unique microstructures that enable strong adhesive forces when interacting with various surfaces.Understanding the interfacial forces generated by these microstructures is crucial for deciphering their adhesion mechanism.This study developed a contact mechanics model based on van der Waals forces and frictional self-locking effects,incorporating both the spatular pad and spatular shaft of the gecko’s foot microstructures.Building on this foundation,a discrete element simulation model was established using the bonding method to replicate the contact between the gecko's spatula and different surfaces.The dynamic adhesion and detaching processes under normal and tangential external forces were simulated,allowing for the analysis of variation curves of normal and tangential adhesion forces at different detaching angles.This provided insights into the directional adhesion mechanics of the gecko's spatula.Furthermore,a force measurement system was constructed using a multi-degree-of-freedom nano-manipulator and an atomic force microscope within a scanning electron microscope.This system was used to experimentally test the adhesion characteristics of the gecko’s foot microstructures,validating the accuracy of the proposed adhesion mechanics model. 展开更多
关键词 Gecko foot Adhesion mechanics model Discrete element analysis Frictional self-locking effects
在线阅读 下载PDF
Biological Jumping Mechanism Analysis and Modeling for Frog Robot 被引量:19
5
作者 Meng Wang Xi-zhe Zang Ji-zhuang Fan Jie Zhao 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期181-188,共8页
This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase an... This paper presents a mechanical model of jumping robot based on the biological mechanism analysis of frog. By biological observation and kinematic analysis the frog jump is divided into take-offphase, aerial phase and landing phase. We find the similar trajectories of hindlimb joints during jump, the important effect of foot during take-off and the role of forelimb in supporting the body. Based on the observation, the frog jump is simplified and a mechanical model is put forward. The robot leg is represented by a 4-bar spring/linkage mechanism model, which has three Degrees of Freedom (DOF) at hip joint and one DOF (passive) at tarsometatarsal joint on the foot. The shoulder and elbow joints each has one DOF for the balancing function of arm. The ground reaction force of the model is analyzed and compared with that of frog during take-off. The results show that the model has the same advantages of low likelihood of premature lift-off and high efficiency as the frog. Analysis results and the model can be employed to develop and control a robot capable of mimicking the jumping behavior of frog. 展开更多
关键词 frog jump modality kinematic analysis mechanical model jumping robot
在线阅读 下载PDF
Modeling mechanism and extension of GM (1,1) 被引量:17
6
作者 Xinping Xiao Yichen Hu Huan Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期445-453,共9页
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th... Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed. 展开更多
关键词 GM (1 1) matrix analysis GGM (1 1) model parameter modeling mechanism.
在线阅读 下载PDF
Modeling mechanism of a novel fractional grey mode based on matrix analysis 被引量:3
7
作者 shuhua mao min zhu +2 位作者 xinping yan mingyun gao xinping xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1040-1053,共14页
To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and... To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism. 展开更多
关键词 fractional order grey model generalized accumulativegeneration matrix decomposition non-equidistance sequence modeling mechanism.
在线阅读 下载PDF
Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil 被引量:9
8
作者 Lana Milene Sabino 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期777-782,共6页
This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure... This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl- lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness. 展开更多
关键词 Soft rocks Mine slopes Numerical modeling Failure mechanisms
在线阅读 下载PDF
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method 被引量:2
9
作者 JIANG Bei WANG Ming-zi +4 位作者 WANG Qi XIN Zhong-xin XING Xue-yang DENG Yu-song YAO Liang-di 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2467-2487,共21页
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ... Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China. 展开更多
关键词 automatically roadway with non-pillar confined lightweight concrete roof and rib support mechanical model bearing behaviour
在线阅读 下载PDF
A multi-mechanism numerical simulation model for CO_(2)-EOR and storage in fractured shale oil reservoirs 被引量:2
10
作者 Yuan-Zheng Wang Ren-Yi Cao +3 位作者 Zhi-Hao Jia Bin-Yu Wang Ming Ma Lin-Song Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1814-1828,共15页
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ... Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs. 展开更多
关键词 CO_(2)-EOR CO_(2)storage Shale oil reservoir Complex fracture model Multiple mechanisms
原文传递
Mechanism modeling and analysis of surplus torque in aeroload simulator
11
作者 Yuqing Chen Jie Ma Yan Fang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第1期78-97,共20页
Aeroload simulator(ALS)is an important hardware-in-loop simulation equipment.In ALS system,surplus torque is the main cause of loading error.And the elimination of surplus torque has become research hotspot for a whil... Aeroload simulator(ALS)is an important hardware-in-loop simulation equipment.In ALS system,surplus torque is the main cause of loading error.And the elimination of surplus torque has become research hotspot for a while,but study about cause of surplus torque has not made much progress.In this paper,a theory about the origin and mechanism modeling method of surplus torque is raised and the model is simulated based on permanent magnet synchronous motor(PMSM)system.Validity of newly launched model is proved by comparison with initial model and the source of error is analyzed afterwards.Moreover,to determine control strategy for eliminating loading error,influential factors of surplus torque are analyzed based on the mechanism model. 展开更多
关键词 Aeroload simulator surplus torque mechanism model PMSM model
原文传递
Progress in Mechanical Modeling of Implantable Flexible Neural Probes
12
作者 Xiaoli You Ruiyu Bai +9 位作者 Kai Xue Zimo Zhang Minghao Wang Xuanqi Wang Jiahao Wang Jinku Guo Qiang Shen Honglong Chang Xu Long Bowen Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1205-1231,共27页
Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,... Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,the rigid neural probes,such as Utah arrays,Michigan probes,and metal microfilament electrodes,are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation,which leads to a significant degradation in the signal quality with the implantation time.In recent years,flexible neural electrodes are rapidly developed with less damage to biological tissues,excellent biocompatibility,and mechanical compliance to alleviate scarring.Among them,the mechanical modeling is important for the optimization of the structure and the implantation process.In this review,the theoretical calculation of the flexible neural probes is firstly summarized with the processes of buckling,insertion,and relative interaction with soft brain tissue for flexible probes from outside to inside.Then,the corresponding mechanical simulation methods are organized considering multiple impact factors to realize minimally invasive implantation.Finally,the technical difficulties and future trends of mechanical modeling are discussed for the next-generation flexible neural probes,which is critical to realize low-invasiveness and long-term coexistence in vivo. 展开更多
关键词 Mechanical modeling flexible neural probes INVASIVE theoretical calculation simulation
在线阅读 下载PDF
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics 被引量:4
13
作者 WANGZhimin XUBei +2 位作者 ZHOUYaoqi XUHehua HUANGShaoying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期313-319,共7页
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been ... Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction. 展开更多
关键词 continent subduction application of ANSYS software dynamic mechanism modeling plate tectonics
在线阅读 下载PDF
Electromagnetic interference modeling and elimination for a solar/hydrogen hybrid powered small-scale UAV 被引量:3
14
作者 Jiahao GE Li LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期293-308,共16页
The trajectory related and Direct Current(DC)Electromagnetic Interference(EMI)of lithium battery,fuel cell and photovoltaic modules has a great influence on the small-scale Unmanned Aerial Vehicle(UAV)airborne magneto... The trajectory related and Direct Current(DC)Electromagnetic Interference(EMI)of lithium battery,fuel cell and photovoltaic modules has a great influence on the small-scale Unmanned Aerial Vehicle(UAV)airborne magnetometer and is hard to be shielded,calibrated or filtered.Besides,the mechanisms underlying the DC EMI have been rarely investigated yet.To cope with this problem,this paper systematically studies the EMI models,and proposes an online 3-layer EMI reduction scheme.First,EMI coupled with UAV motion model and hybrid power system is established.Second,the mechanism EMI models of hybrid power system are established and verified based on the proposed concept“equivalent current”.Third,an online 3-layer EMI reduction scheme is proposed,including battery layer,trajectory planning layer and energy management layer.In the first main layer,EMI self-cancellation is realized by rotating battery inclinations and symmetrical circuits.In response to errors,the trajectory planning layer reduces the EMI intensity by optimizing an optimal trajectory,while the energy management layer prioritizes power allocation to power sources that can produce small and stable EMI.Simulation results of climb,level flight and descent illustrate the efficaciousness and applicability of the proposed online 3-layer EMI reduction scheme. 展开更多
关键词 Electromagnetic interference EMI reduction Energy management Hybrid powered UAV mechanism modeling Trajectory planning
原文传递
Trial Production of Heavy-Duty Metal Rubber Based on Predictive Model of Relative Density Mechanics
15
作者 Hao Huirong Wang Jiawei +1 位作者 Zhao Wenchao Ren Jiangpeng 《稀有金属材料与工程》 北大核心 2025年第3期604-611,共8页
The predictive model and design of heavy-duty metal rubber shock absorber for the powertrains of heavy-load mining vehicles were investigated.The microstructural characteristics of the wire mesh were elucidated using ... The predictive model and design of heavy-duty metal rubber shock absorber for the powertrains of heavy-load mining vehicles were investigated.The microstructural characteristics of the wire mesh were elucidated using fractal graphs.A numerical model based on virtual fabrication technique was established to propose a design scheme for the wire mesh component.Four sets of wire mesh shock absorbers with various relative densities were prepared and a predictive model based on these relative densities was established through mechanical testing.To further enhance the predictive accuracy,a variable transposition fitting method was proposed to refine the model.Residual analysis was employed to quantitatively validate the results against those obtained from an experimental control group.The results show that the improved model exhibits higher predictive accuracy than the original model,with the determination coefficient(R^(2))of 0.9624.This study provides theoretical support for designing wire mesh shock absorbers with reduced testing requirements and enhanced design efficiency. 展开更多
关键词 metal rubber fractal graph preparation process mechanical model properties prediction
原文传递
Mechanical Constitutive Model for Equivalent Solid of Fission Gas Bubbles in Irradiated U-10Mo Fuels
16
作者 Li Yong Yan Feng +2 位作者 Zhang Jing Zang Liye Ding Shurong 《稀有金属材料与工程》 北大核心 2025年第7期1653-1660,共8页
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea... The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants. 展开更多
关键词 effective mechanical constitutive model fission gas bubbles FE method U-10Mo nuclear fuels macroscopic elastic constants
原文传递
An efficient coal and gas outburst hazard prediction method using an improved limit equilibrium model and stress field detection
17
作者 Yingjie Zhao Dazhao Song +5 位作者 Liming Qiu Majid Khan Xueqiu He Zhenlei Li Yujie Peng Anhu Wang 《International Journal of Coal Science & Technology》 2025年第2期108-122,共15页
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C... Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst. 展开更多
关键词 Coal and gas outburst Mechanical model INSTABILITY Seismic wave tomography Prediction method
在线阅读 下载PDF
Kelvin lattice structures fabricated by laser powder bed fusion:Design,preparation,and mechanical performance
18
作者 Yan-peng Wei Huai-qian Li +3 位作者 Ying-chun Ma Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 2025年第2期117-127,共11页
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga... Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal. 展开更多
关键词 Kelvin structure metallic lattice structures laser powder bed fusion mechanical model isotropic mechanical properties
在线阅读 下载PDF
Force model based on heterogeneous components decoupling and machining behaviors of ultrasonic grinding continuous fiber-reinforced MMCs
19
作者 Tao CHEN Shandong FENG +3 位作者 Chunchao LIN Wenfeng DING Biao ZHAO Jiuhua XU 《Chinese Journal of Aeronautics》 2025年第9期520-539,共20页
Continuous Fiber-reinforced Metal Matrix Composites(CFMMCs),such as Si C fiberreinforced TC17 matrix composites(SiC_(f)/TC17),are renowned for their exceptional mechanical properties.However,their heterogeneous compos... Continuous Fiber-reinforced Metal Matrix Composites(CFMMCs),such as Si C fiberreinforced TC17 matrix composites(SiC_(f)/TC17),are renowned for their exceptional mechanical properties.However,their heterogeneous compositions present significant machining challenges,including fiber pullout,matrix cracking,and accelerated tool wear.Ultrasonic Vibration-Assisted Grinding(UVAG)has proven to be an effective technique for overcoming these challenges.The material removal mechanisms in UVAG,especially in composites with both ductile and brittle phases,remain poorly understood.To explore these issues,UVAG and Conventional Grinding(CG)experiments were conducted on SiC_(f)/TC17 along two grinding directions:fiber's transverse direction(FT)and fiber's longitudinal direction(FL).This paper aims to provide a new dynamic mechanical model and shed light on the complex removal mechanisms in CFMMCs,which are characterized by a near one-to-one alternation of ductile and brittle phases.The findings reveal that UVAG reduces fiber damage and surface roughness compared to CG,especially when grinding along FT.UVAG lowers normal(F_(n))and tangential grinding forces(F_(t))by 15.3%and 12.3%,respectively.This highlights UVAG's potential for improving the machinability of complex materials like CFMMCs.The proposed grinding force model closely matches the experimental results.This paper hopes to support the precision abrasive machining of CFMMCs,a kind of complex and highly anisotropic composite material,and promote their application in the fields such as aerospace. 展开更多
关键词 Continuous fiber-reinforced metal matrix composites Heterogeneous composition Ultrasonic vibration-assisted grinding Removal mechanism Dynamic mechanical model
原文传递
Current development and future prospects of multi-target assignment problem:A bibliometric analysis review
20
作者 Shuangxi Liu Zehuai Lin +1 位作者 Wei Huang Binbin Yan 《Defence Technology(防务技术)》 2025年第1期44-59,共16页
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu... The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area. 展开更多
关键词 Multi-target assignment Offensive and defensive confrontation Cooperative operation modeling mechanism Solution algorithm CiteSpace analysis
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部