期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves 被引量:12
1
作者 安钰 沈应柏 张志翔 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期156-160,I0003,共6页
The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wound... The changes of hydrogen peroxide (H2O2) metabolism and antioxidant enzyme activities in a hybrid poplar (Populus simonii xp. pyramidalis 'Opera 8277') in response to rnechanical damage (MD) and herbivore wounding (HW) were investigated to determine whether H2O2 could function as the secondary messenger in the signaling of systemic resistance. Results show that H2O2 was generated in wounded leaves through MD and HW treatments and systemically in unwounded leaves around the wounded leaves. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were also enhanced. However, the H2O2 accumulation and antioxidant enzyme activities were inhibited in MD leaves through the pretreatment with DPI (which is a specific inhibitor of NADPH oxidase). The results of this study suggest that H2O2 could be systemically induced by MD and HW treatments, and H2O2 metabolism was closely related to the change in SOD, APX and CAT activities. A high level of antioxidant enzymes could decrease membrane lipid peroxidation levels and effectively induce plant defense responses. 展开更多
关键词 antioxidant enzymes herbivore wound induced resistance mechanical damage reactive oxygen species
在线阅读 下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions 被引量:1
2
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model Thermal and mechanical damage Fractional derivative
在线阅读 下载PDF
Effects of microstructures on deformation and damage of thermomechanical fatigue in nickel-base single crystal superalloys
3
作者 Cheng LUO Huang YUAN 《Chinese Journal of Aeronautics》 2025年第2期541-558,共18页
Thermomechanical Fatigue (TMF) is one of the most dangerous failure modes of high-temperature structures. The effect of coarsened and rafted microstructures on the TMF behavior of Nickel-Base Single Crystal Superalloy... Thermomechanical Fatigue (TMF) is one of the most dangerous failure modes of high-temperature structures. The effect of coarsened and rafted microstructures on the TMF behavior of Nickel-Base Single Crystal Superalloys (NBSX) was experimentally studied. TMF tests under In-Phase (IP) and Out-of-Phase (OP) paths revealed significant variations in TMF life reduction. Cyclic deformation behaviors of alloys with different microstructures were compared. The effect of microstructure on TMF damage mechanisms was unveiled from characterizations of fracture surfaces and longitudinal sections by scanning electronic microscope and optical microscope. A transition from mode-I to crystallographic fracture in the coarsened alloy during IP-TMF was observed and discussed. Due to the degraded microstructure, the dispersed distribution of crystal slips was distinguished in the coarsened and rafted alloys. The competitive or synergetic interactions among oxidation-assisted mode-I opening, casting pore-related mode-I creep and crystallographic slipping were discussed. This study underscores the complex interplay among microstructure, deformation behaviors and damage mechanisms, offering valuable insights into alloy performance under TMF conditions. 展开更多
关键词 Thermomechanical fatigue Rafting and coarsening Single crystal superalloy damage mechanism Life reduction Fatigue-creep-oxidation
原文传递
Coupled thermo-mechanical constitutive damage model for sandstone 被引量:7
4
作者 Savani Vidana Pathiranagei Ivan Gratchev 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1710-1721,共12页
Underground rock dynamic disasters are becoming more severe due to the increasing depth of human operations underground.Underground temperature and pressure conditions contribute significantly to these disasters.There... Underground rock dynamic disasters are becoming more severe due to the increasing depth of human operations underground.Underground temperature and pressure conditions contribute significantly to these disasters.Therefore,it is important to understand the coupled thermo-mechanical(TM)behaviour of rocks for the long-term safety and maintenance of underground tunnelling and mining.Moreover,investigation of the damage,strength and failure characteristics of rocks under triaxial stress conditions is important to avoid underground rock disasters.In this study,based on Weibull distribution and Lemaitre's strain equivalent principle,a statistical coupled TM constitutive model for sandstone was established under high temperature and pressure conditions.The triaxial test results of sandstone under different temperature and pressure conditions were used to validate the model.The proposed model was in good agreement with the experimental results up to 600℃.The total TM damage was decreased with increasing temperature,while it was increased with increasing confining pressure.The model's parameters can be calculated using conventional laboratory test results. 展开更多
关键词 High temperature Confining pressure Thermo-mechanical(TM)damage Thermal damage mechanical damage
在线阅读 下载PDF
A HYDRO-MECHANICAL-CHEMICAL COUPLING MODEL FOR GEOMATERIAL WITH BOTH MECHANICAL AND CHEMICAL DAMAGES CONSIDERED 被引量:5
5
作者 Dawei Hu Hui Zhou +3 位作者 Qizhi Hu Jianfu Shao Xiating Feng Haibin Xiao 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第4期361-376,共16页
A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid m... A general framework of hydro-mechanical-chemical coupling model is proposed for geomaterial subjected to the dual effects of mechanical loading and chemical degradation. Mechanical damage due to microcracks in solid matrix and chemical damage induced by the increase of porosity due to dissolution of matrix minerals as well as their interactions are considered. A special model is proposed for sandstone. The reaction rate is formulated within the framework of mineral reaction kinetics and can thus take into account different dissolution mechanisms of three main mineral compositions under different pH values. The increase of porosity is physically defined by the dissolution of mineral composition and the chemical damage is related to the increase of porosity. The mechanical behavior is characterized by unified plastic damage and viscoplastic damage modeling. The effective stress is used for describing the effect of pore pressure. The elastic parameters and plastic evolution as well as viscoplastic evolution are dependent on chemical damage. The advection, which is coupled with mechanical damage and chemical damage, is considered as the dominant mechanism of mass transfer. The application of model proposed is from decoupled experiments to fully coupled experiment. The model offers a convenient approach to describing the hydro-mechanical-chemical coupled behavior of geomaterial. 展开更多
关键词 hydro-mechanical-chemical coupling mechanical damage chemical damage SANDSTONE chemical kinetics
原文传递
Mechanical response and microscopic damage mechanism of pre-flawed sandstone subjected to monotonic and multilevel cyclic loading:A laboratory-scale investigation 被引量:9
6
作者 Kesheng Li Shengqi Yang +3 位作者 Chuanxiao Liu Yun Chen Guanglei Zhang Qing Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1487-1510,共24页
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c... This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate. 展开更多
关键词 SANDSTONE Pre-existing coplanar flaws Multilevel constant-amplitude cyclic loading mechanical behavior Microscopic damage mechanism
在线阅读 下载PDF
Mechanical and damage evolution properties of sandstone under triaxial compression 被引量:16
7
作者 Zong Yijiang Han Lijun +1 位作者 Wei Jianjun Wen Shengyong 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期601-607,共7页
To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and charac... To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process. 展开更多
关键词 Rock mechanics mechanical properties Dilatation damage evolution Failure characteristics
在线阅读 下载PDF
Mechanical and magnetic hysteresis as indicators of the origin and inception of fatigue damage in steel 被引量:2
8
作者 Sheng BAO Wei-liang JIN Ming-feng HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第8期580-586,共7页
N2 and N3 are known as the transition points of the three principal stages of fatigue: initial accommodation, accretion of damage and terminal fatigue. Many experiments show that the ratios of N2/Nf and N3/Nf tend to ... N2 and N3 are known as the transition points of the three principal stages of fatigue: initial accommodation, accretion of damage and terminal fatigue. Many experiments show that the ratios of N2/Nf and N3/Nf tend to be stable even though the specific N2 and N3 values may fluctuate widely. The primary goal of this research is to study the piezomagnetic field surrounding AISI 1018 steel specimen under repeated loads and to find the ratio values of N2/Nf and N3/Nf by analyzing 11 sets of low-cycle fatigue data. An MTS-810 testing system with a peak capacity of 222 kN was used to obtain the data which consisted of stress, strain, and piezomagnetic field. A computer program was constructed to track the evolution of the piezomagnetic field and re- gression analysis was carried out to determine N2 and N3 values. It was observed that there exists a consistent relationship between N2 and Nf. The apparent invariance of the ratio N2/Nf implies that N2 may be identified as an index of performance in the early loading response of a specimen that forecasts its fatigue life, Nf. It has been demonstrated that measurements of the magnetic and mechanical hysteresis can yield significant insights into the various stages of the development of a fatigue critical microstructure which culminates in complete rupture of the material. 展开更多
关键词 Piezomagnetic effects. Fatigue damage. mechanical hvsteresis. Magnetic hysteresis
原文传递
Dynamic Mechanical Characteristics and Damage Evolution Model of Granite
9
作者 Shuaifeng Wu Yingqi Wei +2 位作者 Hong Cai Bei Jia Dianshu Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期302-311,共10页
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop... By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite. 展开更多
关键词 split Hopkinson pressure bar(SHPB) stress wave parameter dynamic mechanical property damage model
在线阅读 下载PDF
Difference in volatiles of poplar induced by various damages 被引量:1
10
作者 胡增辉 杨迪 沈应柏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第4期280-282,共3页
Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to f... Three treatments including mechanical damage, Lymantria dispar attacking and daubing oral secretions of the in-sects on mechanically damaged cut were conducted on Populus simonii譖opulus pyramibalis c.v. in order to find the genuine reason leading to effective resistance response of tree to insects attacking. The release situation of the induced volatiles of the plant was analyzed by TCT-GC/MS at 24 hours after damages. The results indicated that some of the volatiles such as (Z)-3-hexenyl acetate, decanal, 3-hexenyl isovalerate, nonanal, ocimene, and 2-cyanobutane can be induced by both insects attack-ing and mechanical damage, while 2,6-dimethyl-1,3,5,7-octatetraene, 2-methyl-6-methylene-1,7-octadien-3-one, caryophyllene, Isovaleronitrile, diethyl-methyl-benzamide, and dicapryl phthalate were only induced by insects attacking. Such difference in volatiles was attributed to that there existed active components in oral sections of the larvae of Lymantria dispar 展开更多
关键词 Induced volatiles Oral secretions of insects mechanical damage the larvae Lymantria dispar attacking
在线阅读 下载PDF
Damage mechanism of gamma-irradiated repurposed pultruded glass fibre polyester composite subjected to low-velocity impact using nondestructive techniques
11
作者 Muhammad Imran Najeeb Muhammad Amir Siti Madiha +4 位作者 Agusril Syamsir Mohd Supian Abu Bakar Sapizah Rahim Asyraf Arif Abu Bakar Tabrej Khan 《Defence Technology(防务技术)》 2025年第5期139-151,共13页
Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the s... Investigating the influence of radiation on glass fibre composites is essential for their use in space and aerospace environment.Gaining insight into the damage mechanisms caused by gamma irradiation,can improve the safety and resilience of structures.This paper is aimed at investigating the failure mode and damage of gamma-irradiated repurposed pultruded glass fibre-reinforced polyester subjected to lowvelocity impact using three types of non-destructive techniques.Three sets of differently layered configurations(CRC,WCRW,W2CR2C)consisting of chopped(c),roving(r),and weaved(w)fibre-reinforced polyester are applied in this study.Drop hammer test is applied to evaluate the low-impact resistance properties of Gamma-irradiated composite at 100 kGy,500 kGy,and 1000 kGy.Preliminary flexural and hardness tests are conducted to further assess the behaviour of irradiated polymer composites.Further,the damage modes associated with the low-impact test are characterised using infrared thermography,flat panel digital radiography,and microscope observation.The results show that the composites irradiated with various doses display good impact resistance at 20 J,presenting minor damages in the form of dents on the surface.The irradiated CRC and WCRW display best impact resistance at 500 kGy,while W2CR2C at 1000 kGy.This shows that the layering sequence of reinforcement fibre can influence the impact resistance of irradiated composites.Apart from that,the application of non-destructive techniques show different damage mechanisms in the form resin cracks,yarn splitting/fracture,and matrix splitting when the composites are exposed at high and low irradiation doses.These findings offer valuable data for the defence industry,particularly in the areas of repair,maintenance,and the development of new materials. 展开更多
关键词 damage mechanism Low-velocity impact Gamma irradiation Non-destructive methods Composite failure analysis ENERGY
在线阅读 下载PDF
Numerical investigation of wellbore damage due to drill string lateral vibration
12
作者 Hadi Haghgouei Anders Nermoen Alexandre Lavrov 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1287-1301,共15页
During drilling operations,cyclic loading is exerted on the wellbore wall by the vibrations of the drill string.This loading could lead to rock fatigue,which in turn might result in wellbore failure.In this study,a nu... During drilling operations,cyclic loading is exerted on the wellbore wall by the vibrations of the drill string.This loading could lead to rock fatigue,which in turn might result in wellbore failure.In this study,a numerical model is developed to simulate the effects of repeated loading on rock fatigue and failure.The simulation is based on an elasto-plastic constitutive model coupled with a damage mechanics approach,which allows us to examine the wellbore instability due to drill string vibrations.The model is verified with the existing data in the literature related to experiments on impact of a steel ball against a curved wall.The findings indicate that cyclic loading increases the development of plastic strain around the wellbore significantly compared to static conditions,promoting rock fatigue.Furthermore,the cyclic loading expands the radius of the yielded zone substantially,a critical factor for maintaining wellbore integrity.The proposed model can be used to evaluate the wellbore stability under repetitive loading caused by the drill string action. 展开更多
关键词 Wellbore stability damage mechanics Fatigue modeling Drill string vibration
在线阅读 下载PDF
Novel integration of PSO-enhanced damage mechanics and finite element method for predicting medium-low-cycle fatigue life in perforated structures
13
作者 Qianyu XIA Zhixin ZHAN +3 位作者 Yue MEI Yanjun ZHANG Weiping HU Qingchun MENG 《Chinese Journal of Aeronautics》 2025年第2期128-142,共15页
In this research,we introduce an innovative approach that combines the Continuum Damage Mechanics-Finite Element Method(CDM-FEM)with the Particle Swarm Optimization(PSO)-based technique,to predict the Medium-Low-Cycle... In this research,we introduce an innovative approach that combines the Continuum Damage Mechanics-Finite Element Method(CDM-FEM)with the Particle Swarm Optimization(PSO)-based technique,to predict the Medium-Low-Cycle Fatigue(MLCF)life of perforated structures.First,fatigue tests are carried out on three center-perforated structures,aiming to assess their fatigue life under various strengthening conditions.These tests reveal significant variations in fatigue life,accompanied by an examination of crack initiation through the analysis of fatigue fracture surfaces.Second,an innovative fatigue life prediction methodology is applied to perforated structures,which not only forecasts the initiation of fatigue cracks but also traces the progression of damage within these structures.It leverages an elastoplastic constitutive model integrated with damage and a damage evolution model under cyclic loads.The accuracy of this approach is validated by comparison with test results,falling within the three times error band.Finally,we explore the impact of various strengthening techniques,including cross-sectional reinforcement and cold expansion,on the fatigue life and damage evolution of these structures.This is achieved through an in-depth comparative analysis of both experimental data and computational predictions,which provides valuable insights into the behavior of perforated structures under fatigue conditions in practical applications. 展开更多
关键词 Continuum damage mechanics Medium-low-cycle fatigue Particle swarm optimization Life prediction Perforated structures
原文传递
Damage and fracture behavior and spatio-temporal evolution of acoustic emission of sandstone before and after laser radiation 被引量:1
14
作者 GAO Ming-zhong LIU Jun-jun +6 位作者 LIChun-xiang YANG Ben-gao LI Fei ZHOU Xue-min YANG Lei YANG Zun-dong XIE Jing 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3264-3280,共17页
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su... Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency. 展开更多
关键词 laser rock breaking efficient drilling acoustic emission mechanical damage strength reduction
在线阅读 下载PDF
Germination of Seeds of Interspecific Hybrid Caiaue×Oil Palm Submitted to the Mechanical Depulping
15
作者 Thais Moura Maquine Alex Queiroz Cysne +3 位作者 Wanderlei Antonio Alves de Lima Samuel Campos Abreu Marcia Green Sara de Almeida Rios 《American Journal of Plant Sciences》 2014年第20期2965-2972,共8页
Oil palm seeds respond well to protocols of dormancy break, however, the seeds of interspecific hybrid (HIE) (caiaué × oil palm) have lower germination rates. The mechanical depulping can affect the potentia... Oil palm seeds respond well to protocols of dormancy break, however, the seeds of interspecific hybrid (HIE) (caiaué × oil palm) have lower germination rates. The mechanical depulping can affect the potential of germination of seeds, therefore the objective of this study was to evaluate the mechanical depulping on the seed germination, vigor and viability of embryos HIE BRS Manicoré. A randomized block design with five treatments, based on the depulping time and on the percentage of mesocarp on the seed with four replications was used. The percentage of seed germination, the germination speed index (GSI), the percentage of fungi and abnormal seeds and vigor and viability of embryos were evaluated. There was no statistical difference (p < 0.05) between treatments for all variables. The average of germination at 35 days was 45.34% and embryos showed high to medium vigor by the tetrazolium test. The mechanical depulping do not affect the seed germination, nor the viability and vigor of embryos HIE BRS Manicoré. It is recommended that the fruits of HIE BRS Manicoré remain in depulper machine for 40 minutes to completely remove the mesocarp residue. 展开更多
关键词 Elaeis oleifera E.guineensis Percentage of Germination mechanical damage Tetrazolium Test
暂未订购
Mechanical properties and energy mechanism of saturated sandstones 被引量:9
16
作者 NIU Shuang-jian, GE Shuang-shuang +3 位作者 YANG Da-fang DANa Yuan-heng YU Jin ZHANG Sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1447-1463,共17页
The effects of saturation on post-peak mechanical properties and energy features are main focal points for sandstones. To obtain these important attributes, post-peak cyclic loading and unloading tests were conducted ... The effects of saturation on post-peak mechanical properties and energy features are main focal points for sandstones. To obtain these important attributes, post-peak cyclic loading and unloading tests were conducted on sandstone rock samples under natural and saturated states using the RMT-150B rock mechanics testing system. After successful processing of these tests, comparisons of stress-strain, strength, deformation, damage, and degradation of mechanical properties, wave velocity, and energy features of sandstone were conducted between natural and saturated states. The results show that saturation has evident weakening effects on uniaxial cyclic loading and unloading strength and elastic modulus of post-peak fracture sandstone. With the increase of post-peak loading and unloading period, the increases in amplitude of peak axial, lateral, and volumetric strains are all enhanced at approximately constant speed under the natural state. The increase in amplitude of axial peak strain is also enhanced at approximately constant speed, while the amplitudes of lateral and volumetric peak strains increase significantly under the saturated state. Compared with the natural state, the increase in amplitude of saturated samples' peak lateral and volumetric strains, and the post-peak cyclic loading and unloading period all conform to the linearly increasing relationship. Under natural and saturated states, the damage factor (the plastic shear strain) of each rock sample gradually increases with the increase of post-peak cyclic loading and unloading period, and the crack damage stress of each rock sample declines rapidly at first and tends to reach a constant value later with the increase in plastic shear strain. Under natural and saturated states, the wave velocities of rock samples all decrease in the process of post-peak cyclic loading and unloading with the increase in plastic shear strain. The wave velocities of rock samples and plastic shear strain conform to the exponential relationship with a constant. Saturation reduces the total absorption energy, dissipated energy, and elastic strain energy of rock samples. 展开更多
关键词 POST-PEAK SATURATION strength property damage mechanism ENERGY
在线阅读 下载PDF
Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor 被引量:9
17
作者 于新海 柴常春 +2 位作者 刘阳 杨银堂 席晓文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期525-529,共5页
The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to ... The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results. 展开更多
关键词 PHEMT damage mechanism high power microwave pulse-width
原文传递
A Comparative Study of the Cellular Microscopic Characteristics and Mechanisms of Maize Seedling Damage from Superabsorbent Polymers 被引量:8
18
作者 CHEN Xian HUANG Lei +2 位作者 MAO Xiaoyun LIAO Zongwen Zhenli HE 《Pedosphere》 SCIE CAS CSCD 2017年第2期274-282,共9页
Superabsorbent polymers(SAPs) as soil moisture conditioners have been increasingly used in agriculture, but conflicting results were reported regarding the effects of SAPs on crop growth. In this study, both laborator... Superabsorbent polymers(SAPs) as soil moisture conditioners have been increasingly used in agriculture, but conflicting results were reported regarding the effects of SAPs on crop growth. In this study, both laboratory cultivation and analysis were conducted to investigate the effects of different SAPs on the growth and physiology of crops under water-saving agricultural practices. Maize(Zea mays L.) seedlings were cultivated using distilled water or three different SAP hydrogels, sodium polyacrylate(SP), potassium polyacrylate(PP), and sodium polyacrylate embedded with phosphate rock powder(SPP), as growth media. Growth characteristics of the model plant and damage were assessed using scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results showed that both the SP and PP treatments had pronounced negative effect on the hydrogels of growth of maize seedlings. The SPP treatment appeared to facilitate the stem-leaf growth and had no obvious adverse effect on root growth. All the three hydrogel treatments caused varying degrees of damage to the organizational structure and cellular morphology of the roots, with the SP and PP treatments causing the most severe damage; the membrane system of root cells was damaged by both SP and PP treatments. An excessive accumulation of sodium and reduction of calcium occurred in the roots may be responsible for the observed damage to the cell membrane system, which, in turn, may have promoted the wilting of the cells. 展开更多
关键词 damage mechanism nutrient concentration root tip cell SAP hydrogels soil moisture conditioners water-savingagriculture
原文传递
Statistical damage model for quasi-brittle materials under uniaxial tension 被引量:4
19
作者 陈健云 白卫峰 +1 位作者 范书立 林皋 《Journal of Central South University》 SCIE EI CAS 2009年第4期669-676,共8页
Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking con... Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course. 展开更多
关键词 quasi-brittle material damage mechanism MICROSTRUCTURE tensile properties fracture process zone
在线阅读 下载PDF
A NEW DAMAGE MECHANICS BASED APPROACH TO FATIGUE LIFE PREDICTION AND ITS ENGINEERING APPLICATION 被引量:5
20
作者 Fei Shen Weiping Hu +1 位作者 Qingchun Meng Miao Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第5期510-520,共11页
An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with ... An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the pa- rameters are obtained in a simple way with reference to the experimental results of fatigue tests on standard specimens. With the utilization of APDL language on the ANSYS platform, a finite element implementation is presented to perform coupling operation on damage evolution of mate- rial and stress redistribution. The fatigue lives of some notched specimens and a Pitch-change-link are predicted by using the above approach. The calculated results are validated with experimental data. 展开更多
关键词 fatigue damage model damage mechanics fatigue life finite element method
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部