A hot-rolled medium Mn(0.2C5Mn)steel is annealed at 650℃ to produce an ultrafine-grained duplex microstructure with different austenite volume fractions by austenite reverted transformation(ART)annealing,and the orie...A hot-rolled medium Mn(0.2C5Mn)steel is annealed at 650℃ to produce an ultrafine-grained duplex microstructure with different austenite volume fractions by austenite reverted transformation(ART)annealing,and the orientation relationship strictly obeys K-S orientation relationship before deformation.Tensile tests are carried out in a temperature range from-196 to 400℃ to examine the effects of the austenite volume fraction and the deformation temperature on the tensile properties and the austenite stability.Microstructural observations reveal that the metastable austenite gradually transformed into a-martensite,which is controlled by the deformation strain,the temperature and the austenite volume fraction.Both strain hardening behavior and ductility of the studied steel are dependent on austenite volume fraction and deformation temperature significantly.The stress-strain curves of ART-annealed 0.2C5Mn steel assume an S shape and a very large work hardening rate of about 10 GPa is obtained at liquid nitrogen deformation temperature.Based on the experimental data,a quantitative relation is proposed to describe the ductility dependence on both the austenite volume fraction and its mechanical stability.展开更多
The ultrafine grained ferritic steels possess shortage of work hardening. Fine grained high strength but low ductility due to the ferrite-martensite dual phase microstruc- ture was obtained in a microalloyed steel and...The ultrafine grained ferritic steels possess shortage of work hardening. Fine grained high strength but low ductility due to the ferrite-martensite dual phase microstruc- ture was obtained in a microalloyed steel and low carbon steels through intercritical annealing of the cold rolled martensite. The dual phase microstructure was uniform and the ferrite grain size was smaller in the microalloyed steel resulted from the pin- ning effect of microalloyed precipitates. But ferrite grown apparently and the volume fraction of the martensite was much higher without the addition of microalloying el- ements. By introducing martensite into the fine grained ferrite, the work hardening was effectively improved, leading to better mechanical stability. As a result of the fine ferrite grain size as well as uniform distribution of the martensite, the work harden- ing was enhanced, showing better strength-ductility balance in the microalloyed dual phase steel.展开更多
Spherical roller bearings in railway car wheels are critical components whose failure may have catastrophic consequences. The present study aims to analyse the mechanical stability of greases and temperature of bearin...Spherical roller bearings in railway car wheels are critical components whose failure may have catastrophic consequences. The present study aims to analyse the mechanical stability of greases and temperature of bearings as indicators for condition-based bearing maintenance. The performed case study includes nine fully-formulated commercial greases examined in the wheel bearings of five ore cars operated in northern Scandinavia. The studied ore cars travelled a distance of about 300 000 km during a period of three years. Small samples of the greases were taken on eight occasions to test their mechanical stability. In addition, the temperatures of the bearings were continuously recorded. After the test period, the wear, electrical damage, and corrosion of the bearings were examined. One of the findings is that the shear stress of the grease at a certain shear velocity (the certain yieldstress (CEY) value) is a good maintenance indicator and is highly dependent on the grease type. The bearing's wear, electrical damage and corrosion also depend on the grease type. However, no oxidation of the greases was identified. The paper also outlines a systematic methodology to determine an overall maintenance indicator for railway roller bearings which is based on the field measurements.展开更多
This paper concentrates on investigating the mechanical stability of a Beam Position Monitor (BMP)support prototype of the Shanghai Synchrotron Radiation Facility(SSRF)project.Both finite element analysis and vibratio...This paper concentrates on investigating the mechanical stability of a Beam Position Monitor (BMP)support prototype of the Shanghai Synchrotron Radiation Facility(SSRF)project.Both finite element analysis and vibration measurements have been performed.Inconsistent results between the simulations and experiments motivate us to study three connections between the support and the ground:ground bolt(used in the initial design),part grout and full grout(proposed in the later research).After changing the connection, the first eigenfrequency is increased from 20.2Hz to 50.2Hz,and the ratio of the integrated RMS displacement (4—50Hz)is decreased from 4.36 to 1.23 in the lateral direction.The mechanical stability is improved greatly.展开更多
Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes dev...Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements.展开更多
The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride...The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride to nickel acetylacetonate, temperature, and stirring rate on the final shape of the products. Transparent electrodes (TEs) were fabricated by wet treatment with acetic acid (AA), without using a sintering process. The low oxidation stability and high surface roughness are the main disadvantages of the CuNW TEs, which limit their applications. In order to overcome these issues, we prepared CuNW/polymer composite TEs by partial embedding of the CuNWs into poly(methyl methacrylate) (PMMA) on poly(ethylene terephthalate) (PET) substrates. The CuNW/PMMA composite TEs exhibit excellent optoelectronic performance (91.3% at 100.7 ff2/sq), low surface roughness (4.6 nm in height), and good mechanical and chemical stability as compared with CuNW TEs. On the basis of these properties, we believe that CuNW-based composite TEs could serve as low-cost materials for a wide range of new optoelectronic devices.展开更多
First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the gen...First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the flame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op- BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken's charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic prop- erties, it is observed that st-BiVO4 is more mechanically stable than the others, st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties, m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications.展开更多
The lanthanum ricinoleate(abbreviated as Lari3) of rare earth heat stabilizer was synthesized by the reaction of ricinoleic acid, lanthanum nitrate and sodium hydroxide. The IR and fluorescence spectra methods confi...The lanthanum ricinoleate(abbreviated as Lari3) of rare earth heat stabilizer was synthesized by the reaction of ricinoleic acid, lanthanum nitrate and sodium hydroxide. The IR and fluorescence spectra methods confirmed the structure of the product. The thermal stability of PVC in the presence of Lari3 was studied by the Congo method and using TG analysis. The results showed that Lari3 could be used as a thermal stabilizer for PVC. When the ratio of Lari3/pentaerythritol was 3:1, the complex exhibited better synergistic effect. Incorporation of Lari3 to PVC resulted in a marked increase of maximum and onset degradation temperature as well as elongation and impact strength of PVC. Lari3 might replace the labile chlorine atoms to interrupt the formation of conjugated double bonds in PVC chains and act as HCl scavenger to restrain the self-catalyticdehydrochlorination.展开更多
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b...Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.展开更多
The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900℃ for 2 h follow...The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900℃ for 2 h followed by austempered at 370℃for another 2 h, the mechanical property of the alloyed ADI can reach the Germanite GGG-100 standard, i.e. σb≮1000 MPa,δ≮5%, at 95% confidence level. And the satisfactory mechanical properties were obtained when the alloyed ADI was austenitized at 850℃ to 1 000 ℃ for 1-4 h, and austempered at 355℃ to 400℃ for another 1 h to 4 h. The microstructures, including nodule number, white bright zone content (martensite-containing interdendritic segregation zone) and retained austenite content, can significantly influence the mechanical properties of the ADI. In order to obtain the good combinations of strength and ductility, the volume fraction of white bright zone should he less than 5%, and the retained austenite contents maintain hetween 30 % and 40%. The application of inoculation techniques to increase graphite nodule number can effectively reduce the white bright zone content in the structure.展开更多
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ...The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.展开更多
In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM fo...In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM forming window of AlNi6TiZr is obtained.The relative density of the sample printed with 270 W-1100 mm/s(laser energy density:82 J/mm3)reaches 99.7%,exhibiting excellent mechanical properties(yield strength(YS):421.7 MPa;ultimate tensile strength(UTS):480.4 MPa).After an aging treatment of 325 ℃-12 h,the YS and UTS of the sample increased to 494 MPa and 550.7 MPa,respectively.Adding Ni,Ti,and Zr components promoted the generation of multi-phase precipitates in the Al alloy and improved the synergistic strengthening effect of multi-phases.The hard-shell structure(HSS)formed by the Al_(3)Ni phase at the grain boundary significantly strengthened the grain boundary strength.The precipitated Al_(3)(Ti,Zr)phases at the grain boundaries prevent grain growth and dislocation movement.The Al_(3)Ni and Al_(3)(Ti,Zr)phases have good thermal stability that can still maintain excellent enhancement effects at high temperature.AlNi6TiZr alloy has great application prospects in medium and high-temperature environments.展开更多
Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)u...Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.展开更多
Magnesium(Mg)-based composites are expected to be useful for biodegradable bone-implant materials due to their degradability,similar elastic modulus to that of bone,and biofunctionalities.However,their rapid degradati...Magnesium(Mg)-based composites are expected to be useful for biodegradable bone-implant materials due to their degradability,similar elastic modulus to that of bone,and biofunctionalities.However,their rapid degradation,poor biotribology performance,and lack of vascularization and antibacterial activity are not conducive to bone-fixation applications.In this study,an in situ Mg_(2)Ge/Mg-Cu-P composite with a nominal composition of Mg-10Ge-2Cu-0.5P(denoted MGCP)was prepared via phosphorus(P)-modified casting followed by hot extrusion for biodegradable bone-fixation applications.For comparison,an in situ Mg_(2)Ge/Mg-Cu composite(Mg-10Ge-2Cu,denoted MGC)was prepared under the same conditions without P-modification.The hot-extruded(HE)MGCP sample showed significantly improved corrosion resistance with corrosion rates of 2.2 mm/y and 2.51 mm/y as measured by potentiodynamic-polarization and hydrogen-release testing in Dulbecco’s Modified Eagle Medium supplemented with fetal bovine serum(denoted DMEM).The HE MGCP also exhibited notably enhanced mechanical properties and biotribological resistance in DMEM,with an σ_(UTS) of ~304.2 MPa,σ_(TYS) of ~202.5 MPa,elongation of ~12.3%,σ_(UCS) of 769.0 MPa,σ_(CYS) of 208.0 MPa,and Brinell hardness of 105.3 HB,along with smallerσ_(TYS) andσ_(CYS) decreases after 3 d of immersion in Hanks’solution.In comparison to pure titanium and Mg,the HE MGCP demonstrated much greater cytocompatibility,angiogenic capacity,and osteogenic differentiation and mineralization capability.Furthermore,the HE MGCP displayed markedly higher in vitro antibacterial activity,in vivo antibacterial and anti-inflammatory ability,and good biosafety in a rat subcutaneous-implantation model compared to pure titanium and Mg,indicating significant potential for biodegradable bone-fixation applications.展开更多
Transformation-induced plasticity-aided steel was rolled at room temperature to different thickness reductions (0, 4%, 10%, 20%, 40%, and 60%). The mechanical properties, microstructure and austenite fractions of th...Transformation-induced plasticity-aided steel was rolled at room temperature to different thickness reductions (0, 4%, 10%, 20%, 40%, and 60%). The mechanical properties, microstructure and austenite fractions of the rolled samples were measured by tensile test, electron back scattered diffraction (EBSD) and X-ray diffraction (XRD) for each rolling. The deformation behavior was studied based on the analysis of the mechanical properties and microstructure of steel after tensile deformation, aiming at understanding the effects of cold rolling reduction on the decay behavior of the austenite and the change of mechanical properties of the TRIP steels. It was found that increasing rolling reduction increases the yield stress gradually but decreases the total elongation significantly. It is very interesting that after 10% rolling reduction the yield stress is about 1 000 MPa but still with 20% total elongation, which gives an excellent combination of yield strength and ductility. Based on the XRD results, it was revealed that in both rolling and tension the austenite volume fraction monotonically decayed with the increase of rolling strain, but the decaying rate is faster in tension than in rolling, which may be ascribed to the higher temperature in rolled specimens than in the tensioned ones during deformation. Experimental results and theoretical reasoning indicate that the decreasing trend of austenite volume fraction with strain can be formulated by a unique equation.展开更多
The mechanical stability of tRNAs contributes to their biological activities.The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known.This tRNA lacks D-and T-arms,represents a stem-bulge...The mechanical stability of tRNAs contributes to their biological activities.The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known.This tRNA lacks D-and T-arms,represents a stem-bulge-stem architecture but still folds into a stable tertiary structure.Although its structure had been reported,studies on its mechanical folding and unfolding kinetic characteristics are lacking.Here,we directly measured the single-molecule mechanical folding and unfolding kinetics of the armless mt tRNAArg by using optical tweezers in different solution conditions.We revealed a two-step reversible unfolding pathway:the first and large transition corresponds to the unfolding of acceptor stem and bulge below 11 pN,and the second and small transition corresponds to the unfolding of anticodon arm at 12 pN-14 pN.Moreover,the free energy landscapes of the unfolding pathways were reconstructed.We also demonstrated that amino acid-chelated Mg^(2+)(aaCM),which mimics the intracellular solution condition,stabilizes the bulge of mitochondrial tRNAArg possibly by reducing the topological constraints or stabilizing the possible local non-canonical base pairings within the bulge region.Our study revealed the solution-dependent mechanical stability of an armless mt tRNA,which may shed light on future mt tRNA studies.展开更多
Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage...Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage during their first service life.Such damage can incur heavy machining penalties or even premature scrapping of wheels.The combination of high contact stresses as well as substantial thermal loading(such as during prolonged periods of tread braking) can lead to severe plastic deformation,thermal fatigue and microstructural deterioration.For some high-strength wheel grades,the increased sensitivity to thermo-mechanical damage observed during the first service period may be attributed to the presence of a near-surface region in which the microstructure is more sensitive to these loading conditions than the underlying material.The standards applicable to wheels used in Australian heavy haul operations are based on the Association of American Railroads(AAR) specification M-107/M-208,which does not include any requirements for microstructure.The implementation of acceptance criteria for the microstructure,in particular that in the near-surface region of the wheel,may be necessary when new wheels are purchased.The stability of wheel microstructures during thermo-mechanical loading and the effects of alloying elements commonly used in wheel manufacturing are reviewed.A brief guide to improving thermal/mechanical stability of the microstructure is also provided.展开更多
Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool ...Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool to evaluate the Pb-contaminated soils stabilized by electrolytic manganese residue(EMR)-based geopolymer(EG-OPC)from the strength and environmental benefits perspective.First,unconfined compressive strength(UCS)and leaching tests were conducted to study the stabilization effectiveness of EG-OPC.Results indicated that the UCS values of soil(5000 mg/kg of pollutants)stabilized by 20%EG-OPC were 4.87 MPa and 8.13 MPa after 7 d and 60 d of curing,respectively.After 60 d of curing,the Pb concentration in the leachate reached 44 mg/L,far lower than the control group(321 mg/L).Second,soil,pore water,and leachate resistivity(ERS,ERW,and ERL)were measured to establish fitting relationships with strength parameters and pollution risk.The good fitting results(e.g.ERS/ERW versus UCS/secant modulus(E50):correlation coefficient R2 z 0.9,ERS/ERW versus Pb contents:R2 z 0.9,and ERL versus Pb2þconcentration:R2¼0.92)and well used Archie's law(ERS versus ERW:R2>0.9)indicate that the resistivity can be used to evaluate the stabilization effectiveness.Furthermore,the microscopic results revealed two behaviors,demonstrating the reliability of resistivity:(1)with the hydration process,resistivity increases due to a denser structure and lower amounts of free water and Pb ions,and(2)the addition of Pb reduces resistivity due to its inhibition or even destructive effects on cementation and formation of hydration products.展开更多
Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides an...Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood.In this study,we innovatively investigate this problem with a particular focus on foam stabilization mechanisms.By employing the Waring blender method,the optimal surfactant-microbial polysaccharide blends are identified,and the foam stability,rheological properties,and decay behavior in different systems under varying conditions are systematically analyzed for the first time.The results reveal that microbial polysaccharides significantly enhance foam stability by improving the viscoelasticity of the liquid films,particularly under high-salinity and high-temperature conditions,leading to notable improvements in both foam stability and sand-carrying capacity.Additionally,scanning electron microscopy(SEM)is used to observe the microstructure of the foam liquid films,demonstrating that the network structure formed by the foam stabilizer within the liquid film effectively inhibits foam coarsening.The Lauryl betaine and Diutan gum blend exhibits outstanding foam stability,superior sand-carrying capacity,and minimal core damage,making(LAB+MPS04)it ideal for applications in enhanced production and reservoir stimulation of unconventional reservoirs.展开更多
The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified...The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified with nano-silica(NS)across a continuum from nanoscale interactions to macroscopic performance.For this,a series of macroscopic experiments was conducted to evaluate the mechanical performance and lead-encapsulation efficiency,including unconfined compressive strength(UCS)and toxicity characteristic leaching procedure(TCLP).Microstructural and phase transformations were characterized using X-ray diffraction,thermogravimetric analysis,and scanning electron microscope.Molecular dynamics simulations revealed the interactions between NS-modified cement,calcium silicate hydrates(C-S-H)gel,and Illite,focusing on interaction energies,atomic density distributions and structural changes.Macroscopic analyses demonstrated that increasing NS content from 0%to 8%improved Pb-immobilization rate from 88.7%to 97.6%and enhanced UCS from 764 kPa to 1358 kPa.These improvements were attributed to NS enhancing the microstructural integrity of C-S-H gel and filling pores in samples.Nanoscale simulations elucidated that Pb-stabilization occurs through coordination bonds with oxygen atoms in the C-S-H silicon chains and on Illite surfaces,complemented by the formation of stable Pb_(3)(CO)_(3)(OH)_(2)precipitates.Additionally,the simulations revealed that Ca^(2+)migration from hydration products to mineral surfaces generated substantial repulsive interaction energies,reducing Illite layer dispersion.However,the presence of Pb impeded further Ca^(2+)migration,leading to expansion of the C-S-H gel,which collectively degraded the mechanical properties of the material.Furthermore,wet-dry and freeze-thaw cycles showed that after 10 cycles,UCS and TCLP results still met the United States Environmental Protection Agency standards,confirming long-term durability.This study provides a theoretical foundation for resource utilization of the contaminated sediments and offers a perspective for design of the cement-based curing agents,particularly in addressing variations in pollutant concentrations and environmental conditions,advancing the application of responsive and controlled release curing agents.展开更多
基金This research was supported by both National Natural Science Foundation of China(NSFC,Nos.51871062,51371057 and 11672195)MNSF of Beijing(No.2182088)Chong-xiang Huang acknowledged Sichuan Youth Science and Technology Foundation(No.2016JQ0047).
文摘A hot-rolled medium Mn(0.2C5Mn)steel is annealed at 650℃ to produce an ultrafine-grained duplex microstructure with different austenite volume fractions by austenite reverted transformation(ART)annealing,and the orientation relationship strictly obeys K-S orientation relationship before deformation.Tensile tests are carried out in a temperature range from-196 to 400℃ to examine the effects of the austenite volume fraction and the deformation temperature on the tensile properties and the austenite stability.Microstructural observations reveal that the metastable austenite gradually transformed into a-martensite,which is controlled by the deformation strain,the temperature and the austenite volume fraction.Both strain hardening behavior and ductility of the studied steel are dependent on austenite volume fraction and deformation temperature significantly.The stress-strain curves of ART-annealed 0.2C5Mn steel assume an S shape and a very large work hardening rate of about 10 GPa is obtained at liquid nitrogen deformation temperature.Based on the experimental data,a quantitative relation is proposed to describe the ductility dependence on both the austenite volume fraction and its mechanical stability.
基金supported by the National Natural Science Foundation of China(Nos.51034009 and 51101033)the Fundamental Research Funds for the Central Universities(Nos.N110407002 and N110307002)
文摘The ultrafine grained ferritic steels possess shortage of work hardening. Fine grained high strength but low ductility due to the ferrite-martensite dual phase microstruc- ture was obtained in a microalloyed steel and low carbon steels through intercritical annealing of the cold rolled martensite. The dual phase microstructure was uniform and the ferrite grain size was smaller in the microalloyed steel resulted from the pin- ning effect of microalloyed precipitates. But ferrite grown apparently and the volume fraction of the martensite was much higher without the addition of microalloying el- ements. By introducing martensite into the fine grained ferrite, the work hardening was effectively improved, leading to better mechanical stability. As a result of the fine ferrite grain size as well as uniform distribution of the martensite, the work harden- ing was enhanced, showing better strength-ductility balance in the microalloyed dual phase steel.
文摘Spherical roller bearings in railway car wheels are critical components whose failure may have catastrophic consequences. The present study aims to analyse the mechanical stability of greases and temperature of bearings as indicators for condition-based bearing maintenance. The performed case study includes nine fully-formulated commercial greases examined in the wheel bearings of five ore cars operated in northern Scandinavia. The studied ore cars travelled a distance of about 300 000 km during a period of three years. Small samples of the greases were taken on eight occasions to test their mechanical stability. In addition, the temperatures of the bearings were continuously recorded. After the test period, the wear, electrical damage, and corrosion of the bearings were examined. One of the findings is that the shear stress of the grease at a certain shear velocity (the certain yieldstress (CEY) value) is a good maintenance indicator and is highly dependent on the grease type. The bearing's wear, electrical damage and corrosion also depend on the grease type. However, no oxidation of the greases was identified. The paper also outlines a systematic methodology to determine an overall maintenance indicator for railway roller bearings which is based on the field measurements.
文摘This paper concentrates on investigating the mechanical stability of a Beam Position Monitor (BMP)support prototype of the Shanghai Synchrotron Radiation Facility(SSRF)project.Both finite element analysis and vibration measurements have been performed.Inconsistent results between the simulations and experiments motivate us to study three connections between the support and the ground:ground bolt(used in the initial design),part grout and full grout(proposed in the later research).After changing the connection, the first eigenfrequency is increased from 20.2Hz to 50.2Hz,and the ratio of the integrated RMS displacement (4—50Hz)is decreased from 4.36 to 1.23 in the lateral direction.The mechanical stability is improved greatly.
基金supported by the Large Research Infrastructures China initiative Accelerator Driven System(No.2017-000052-75-01-000590)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022422)+1 种基金the Young Scientists of National Natural Science Foundation of China(No.12005275)the Advanced Energy Science and Technology Guangdong Laboratory(No.HND22PTZZYY)。
文摘Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements.
文摘The thermal decomposition synthesis of long copper nanowires (CuNWs) was achieved by controlling the synthesis parameters. A detailed study was performed to determine the effect of the molar ratio of copper chloride to nickel acetylacetonate, temperature, and stirring rate on the final shape of the products. Transparent electrodes (TEs) were fabricated by wet treatment with acetic acid (AA), without using a sintering process. The low oxidation stability and high surface roughness are the main disadvantages of the CuNW TEs, which limit their applications. In order to overcome these issues, we prepared CuNW/polymer composite TEs by partial embedding of the CuNWs into poly(methyl methacrylate) (PMMA) on poly(ethylene terephthalate) (PET) substrates. The CuNW/PMMA composite TEs exhibit excellent optoelectronic performance (91.3% at 100.7 ff2/sq), low surface roughness (4.6 nm in height), and good mechanical and chemical stability as compared with CuNW TEs. On the basis of these properties, we believe that CuNW-based composite TEs could serve as low-cost materials for a wide range of new optoelectronic devices.
文摘First principles calculations of structural, electronic, mechanical, and thermodynamic properties of different poly- morphs of BiVO4 are performed using Bender-type plane/wave ultrasoft pseudopotentials within the generalized gradient approximation (GGA) in the flame of density functional theory (DFT). The calculated structural and electronic properties are consistent with the previous theoretical and experimental results. The electronic structures reveal that m-BiVO4, op- BiVO4, and st-BiVO4 have indirect band gaps, on the other hand, zt-BiVO4 has a direct band gap. From the DOS and Mulliken's charge analysis, it is observed that only m-BiVO4 has 6s2 Bi lone pair. Bond population analysis indicates that st-BiVO4 shows a more ionic nature and a similar result is obtained from the elastic properties. From the elastic prop- erties, it is observed that st-BiVO4 is more mechanically stable than the others, st-BiVO4 is more ductile and useful for high electro-optical and electro-mechanical coupling devices. Our calculated thermodynamic properties confirm the similar characteristics found from electronic and elastic properties, m-BiVO4 is useful as photocatalysts, solid state electrolyte, and electrode and other polymorphs are applicable in electronic device fabrications.
基金Project supported by Bureau of Science and Technology of Xinjiang Production and Construction Corps(2011BC008)
文摘The lanthanum ricinoleate(abbreviated as Lari3) of rare earth heat stabilizer was synthesized by the reaction of ricinoleic acid, lanthanum nitrate and sodium hydroxide. The IR and fluorescence spectra methods confirmed the structure of the product. The thermal stability of PVC in the presence of Lari3 was studied by the Congo method and using TG analysis. The results showed that Lari3 could be used as a thermal stabilizer for PVC. When the ratio of Lari3/pentaerythritol was 3:1, the complex exhibited better synergistic effect. Incorporation of Lari3 to PVC resulted in a marked increase of maximum and onset degradation temperature as well as elongation and impact strength of PVC. Lari3 might replace the labile chlorine atoms to interrupt the formation of conjugated double bonds in PVC chains and act as HCl scavenger to restrain the self-catalyticdehydrochlorination.
基金Funded by the National Natural Science Foundation of China(No.51473104)
文摘Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability.
文摘The aim of present work is to investigate the influencing factors on mechanical property stability of Cu-Mo-Ni alloyed austempered ductile iron (ADI). The results show that after austenitized at 900℃ for 2 h followed by austempered at 370℃for another 2 h, the mechanical property of the alloyed ADI can reach the Germanite GGG-100 standard, i.e. σb≮1000 MPa,δ≮5%, at 95% confidence level. And the satisfactory mechanical properties were obtained when the alloyed ADI was austenitized at 850℃ to 1 000 ℃ for 1-4 h, and austempered at 355℃ to 400℃ for another 1 h to 4 h. The microstructures, including nodule number, white bright zone content (martensite-containing interdendritic segregation zone) and retained austenite content, can significantly influence the mechanical properties of the ADI. In order to obtain the good combinations of strength and ductility, the volume fraction of white bright zone should he less than 5%, and the retained austenite contents maintain hetween 30 % and 40%. The application of inoculation techniques to increase graphite nodule number can effectively reduce the white bright zone content in the structure.
基金supported by the National Natural Science Foundation of China(Grant No.22305123)。
文摘The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring.
基金Post Graduate Innovation Funding Project of Hebei Province(No.CXZZSS2023041)Hebei Natural Science Foundation of China(No.E2021203138)Special Project for Local Science and Technology Development Guided by the Central Government of Hebei Province(236Z1805G).
文摘In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM forming window of AlNi6TiZr is obtained.The relative density of the sample printed with 270 W-1100 mm/s(laser energy density:82 J/mm3)reaches 99.7%,exhibiting excellent mechanical properties(yield strength(YS):421.7 MPa;ultimate tensile strength(UTS):480.4 MPa).After an aging treatment of 325 ℃-12 h,the YS and UTS of the sample increased to 494 MPa and 550.7 MPa,respectively.Adding Ni,Ti,and Zr components promoted the generation of multi-phase precipitates in the Al alloy and improved the synergistic strengthening effect of multi-phases.The hard-shell structure(HSS)formed by the Al_(3)Ni phase at the grain boundary significantly strengthened the grain boundary strength.The precipitated Al_(3)(Ti,Zr)phases at the grain boundaries prevent grain growth and dislocation movement.The Al_(3)Ni and Al_(3)(Ti,Zr)phases have good thermal stability that can still maintain excellent enhancement effects at high temperature.AlNi6TiZr alloy has great application prospects in medium and high-temperature environments.
基金the Natural Science Foundation of Chongqing of China(Nos.CSTB2024NSCQ-MSX1013 and cstc2021jcyj-msxmX1139)the Science and Technology Research Program of Chongqing Education Commission(Nos.KJZD-K202304502,KJQN202201214,KJQN202001243 and KJZD-M202301201)the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(No.2024CL05).
文摘Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.
基金supported by the Zhejiang Public Welfare Technology Application Research Project of China(No.LTGY24H140002,No.LTGY23H140002,No.LGF22H140008)Wenzhou Medical University Basic Scientific Research Expenses Project(KYYW202331)the financial support for this research by the Australian Research Council(ARC)through the Discovery Project(DP240101131).
文摘Magnesium(Mg)-based composites are expected to be useful for biodegradable bone-implant materials due to their degradability,similar elastic modulus to that of bone,and biofunctionalities.However,their rapid degradation,poor biotribology performance,and lack of vascularization and antibacterial activity are not conducive to bone-fixation applications.In this study,an in situ Mg_(2)Ge/Mg-Cu-P composite with a nominal composition of Mg-10Ge-2Cu-0.5P(denoted MGCP)was prepared via phosphorus(P)-modified casting followed by hot extrusion for biodegradable bone-fixation applications.For comparison,an in situ Mg_(2)Ge/Mg-Cu composite(Mg-10Ge-2Cu,denoted MGC)was prepared under the same conditions without P-modification.The hot-extruded(HE)MGCP sample showed significantly improved corrosion resistance with corrosion rates of 2.2 mm/y and 2.51 mm/y as measured by potentiodynamic-polarization and hydrogen-release testing in Dulbecco’s Modified Eagle Medium supplemented with fetal bovine serum(denoted DMEM).The HE MGCP also exhibited notably enhanced mechanical properties and biotribological resistance in DMEM,with an σ_(UTS) of ~304.2 MPa,σ_(TYS) of ~202.5 MPa,elongation of ~12.3%,σ_(UCS) of 769.0 MPa,σ_(CYS) of 208.0 MPa,and Brinell hardness of 105.3 HB,along with smallerσ_(TYS) andσ_(CYS) decreases after 3 d of immersion in Hanks’solution.In comparison to pure titanium and Mg,the HE MGCP demonstrated much greater cytocompatibility,angiogenic capacity,and osteogenic differentiation and mineralization capability.Furthermore,the HE MGCP displayed markedly higher in vitro antibacterial activity,in vivo antibacterial and anti-inflammatory ability,and good biosafety in a rat subcutaneous-implantation model compared to pure titanium and Mg,indicating significant potential for biodegradable bone-fixation applications.
基金Sponsored by National Basic Research Program(973 Program) of China(2010CB630803)
文摘Transformation-induced plasticity-aided steel was rolled at room temperature to different thickness reductions (0, 4%, 10%, 20%, 40%, and 60%). The mechanical properties, microstructure and austenite fractions of the rolled samples were measured by tensile test, electron back scattered diffraction (EBSD) and X-ray diffraction (XRD) for each rolling. The deformation behavior was studied based on the analysis of the mechanical properties and microstructure of steel after tensile deformation, aiming at understanding the effects of cold rolling reduction on the decay behavior of the austenite and the change of mechanical properties of the TRIP steels. It was found that increasing rolling reduction increases the yield stress gradually but decreases the total elongation significantly. It is very interesting that after 10% rolling reduction the yield stress is about 1 000 MPa but still with 20% total elongation, which gives an excellent combination of yield strength and ductility. Based on the XRD results, it was revealed that in both rolling and tension the austenite volume fraction monotonically decayed with the increase of rolling strain, but the decaying rate is faster in tension than in rolling, which may be ascribed to the higher temperature in rolled specimens than in the tensioned ones during deformation. Experimental results and theoretical reasoning indicate that the decreasing trend of austenite volume fraction with strain can be formulated by a unique equation.
基金supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2017A030310085)the Science and Technology Planning Project of Guangdong Province,China(Grant No.2018A050506034).
文摘The mechanical stability of tRNAs contributes to their biological activities.The mitochondrial tRNAArg from Romanomermis culicivorax is the shortest tRNA ever known.This tRNA lacks D-and T-arms,represents a stem-bulge-stem architecture but still folds into a stable tertiary structure.Although its structure had been reported,studies on its mechanical folding and unfolding kinetic characteristics are lacking.Here,we directly measured the single-molecule mechanical folding and unfolding kinetics of the armless mt tRNAArg by using optical tweezers in different solution conditions.We revealed a two-step reversible unfolding pathway:the first and large transition corresponds to the unfolding of acceptor stem and bulge below 11 pN,and the second and small transition corresponds to the unfolding of anticodon arm at 12 pN-14 pN.Moreover,the free energy landscapes of the unfolding pathways were reconstructed.We also demonstrated that amino acid-chelated Mg^(2+)(aaCM),which mimics the intracellular solution condition,stabilizes the bulge of mitochondrial tRNAArg possibly by reducing the topological constraints or stabilizing the possible local non-canonical base pairings within the bulge region.Our study revealed the solution-dependent mechanical stability of an armless mt tRNA,which may shed light on future mt tRNA studies.
文摘Thermal or thermo-mechanical loading is one of the major causes of wheel surface damage in Australian heavy haul operations.In addition,multi-wear wheels appear to be particularly sensitive to thermo-mechanical damage during their first service life.Such damage can incur heavy machining penalties or even premature scrapping of wheels.The combination of high contact stresses as well as substantial thermal loading(such as during prolonged periods of tread braking) can lead to severe plastic deformation,thermal fatigue and microstructural deterioration.For some high-strength wheel grades,the increased sensitivity to thermo-mechanical damage observed during the first service period may be attributed to the presence of a near-surface region in which the microstructure is more sensitive to these loading conditions than the underlying material.The standards applicable to wheels used in Australian heavy haul operations are based on the Association of American Railroads(AAR) specification M-107/M-208,which does not include any requirements for microstructure.The implementation of acceptance criteria for the microstructure,in particular that in the near-surface region of the wheel,may be necessary when new wheels are purchased.The stability of wheel microstructures during thermo-mechanical loading and the effects of alloying elements commonly used in wheel manufacturing are reviewed.A brief guide to improving thermal/mechanical stability of the microstructure is also provided.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3901204)the Foundation for Distinguished Young Scholars of Hubei Province,China(Grant No.2021CFA096)the National Natural Science Foundation of China(Grant No.U20A20320).
文摘Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool to evaluate the Pb-contaminated soils stabilized by electrolytic manganese residue(EMR)-based geopolymer(EG-OPC)from the strength and environmental benefits perspective.First,unconfined compressive strength(UCS)and leaching tests were conducted to study the stabilization effectiveness of EG-OPC.Results indicated that the UCS values of soil(5000 mg/kg of pollutants)stabilized by 20%EG-OPC were 4.87 MPa and 8.13 MPa after 7 d and 60 d of curing,respectively.After 60 d of curing,the Pb concentration in the leachate reached 44 mg/L,far lower than the control group(321 mg/L).Second,soil,pore water,and leachate resistivity(ERS,ERW,and ERL)were measured to establish fitting relationships with strength parameters and pollution risk.The good fitting results(e.g.ERS/ERW versus UCS/secant modulus(E50):correlation coefficient R2 z 0.9,ERS/ERW versus Pb contents:R2 z 0.9,and ERL versus Pb2þconcentration:R2¼0.92)and well used Archie's law(ERS versus ERW:R2>0.9)indicate that the resistivity can be used to evaluate the stabilization effectiveness.Furthermore,the microscopic results revealed two behaviors,demonstrating the reliability of resistivity:(1)with the hydration process,resistivity increases due to a denser structure and lower amounts of free water and Pb ions,and(2)the addition of Pb reduces resistivity due to its inhibition or even destructive effects on cementation and formation of hydration products.
基金supported by the Key Technology Research on Increasing Recovery Rate in Tight Sandstone Gas Reservoirs,a Major Scientific and Technological Special Project of China National Petroleum Corporation(Project No.2023ZZ25).
文摘Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood.In this study,we innovatively investigate this problem with a particular focus on foam stabilization mechanisms.By employing the Waring blender method,the optimal surfactant-microbial polysaccharide blends are identified,and the foam stability,rheological properties,and decay behavior in different systems under varying conditions are systematically analyzed for the first time.The results reveal that microbial polysaccharides significantly enhance foam stability by improving the viscoelasticity of the liquid films,particularly under high-salinity and high-temperature conditions,leading to notable improvements in both foam stability and sand-carrying capacity.Additionally,scanning electron microscopy(SEM)is used to observe the microstructure of the foam liquid films,demonstrating that the network structure formed by the foam stabilizer within the liquid film effectively inhibits foam coarsening.The Lauryl betaine and Diutan gum blend exhibits outstanding foam stability,superior sand-carrying capacity,and minimal core damage,making(LAB+MPS04)it ideal for applications in enhanced production and reservoir stimulation of unconventional reservoirs.
基金the supports from the National Natural Science Foundation of China(Grant Nos.42177163 and 42307232)the China Postdoctoral Science Foundation of China(Grant No.2022M723347).
文摘The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified with nano-silica(NS)across a continuum from nanoscale interactions to macroscopic performance.For this,a series of macroscopic experiments was conducted to evaluate the mechanical performance and lead-encapsulation efficiency,including unconfined compressive strength(UCS)and toxicity characteristic leaching procedure(TCLP).Microstructural and phase transformations were characterized using X-ray diffraction,thermogravimetric analysis,and scanning electron microscope.Molecular dynamics simulations revealed the interactions between NS-modified cement,calcium silicate hydrates(C-S-H)gel,and Illite,focusing on interaction energies,atomic density distributions and structural changes.Macroscopic analyses demonstrated that increasing NS content from 0%to 8%improved Pb-immobilization rate from 88.7%to 97.6%and enhanced UCS from 764 kPa to 1358 kPa.These improvements were attributed to NS enhancing the microstructural integrity of C-S-H gel and filling pores in samples.Nanoscale simulations elucidated that Pb-stabilization occurs through coordination bonds with oxygen atoms in the C-S-H silicon chains and on Illite surfaces,complemented by the formation of stable Pb_(3)(CO)_(3)(OH)_(2)precipitates.Additionally,the simulations revealed that Ca^(2+)migration from hydration products to mineral surfaces generated substantial repulsive interaction energies,reducing Illite layer dispersion.However,the presence of Pb impeded further Ca^(2+)migration,leading to expansion of the C-S-H gel,which collectively degraded the mechanical properties of the material.Furthermore,wet-dry and freeze-thaw cycles showed that after 10 cycles,UCS and TCLP results still met the United States Environmental Protection Agency standards,confirming long-term durability.This study provides a theoretical foundation for resource utilization of the contaminated sediments and offers a perspective for design of the cement-based curing agents,particularly in addressing variations in pollutant concentrations and environmental conditions,advancing the application of responsive and controlled release curing agents.