Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fie...Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fields. In order to better evaluate the speckle, speckle measurement methods must be studied. In this study, a dynamic measurement method for laser speckles is proposed according to the optical superposition characteristics of speckle, which can reduce the influence of non-coherent factors on the speckle measurement results. The feasibility of the dynamic speckle measurement method is verified by designing an experimental scheme.展开更多
Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orien...Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.展开更多
Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural e...Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.展开更多
In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deduc...In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.展开更多
Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave ref...Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.展开更多
Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC...Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.展开更多
Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology a...Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology and two-photon induced fluorescence method, are introduced. The properties of the three experiments to be utilizable and realizable under desirable limitation are simply analyzed. The advantages of the measurements for TPA characterization are also analyzed.展开更多
The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the s...The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.展开更多
Aiming at the approximate measurement of magnetic rotation angle in optical current sensor based on light intensity detection mode,this paper proposes a current measurement method based on triangular constant transfor...Aiming at the approximate measurement of magnetic rotation angle in optical current sensor based on light intensity detection mode,this paper proposes a current measurement method based on triangular constant transformation to reconstruct magnetic rotation angle,so as to avoid the large current measurement error caused by the approximate measurement of the magnetic rotation angle.By extracting the direct current(DC)component and the alternating current(AC)component of the light intensity signal detected by the photoelectric detector(PD),the sine signal containing the magnetic rotation angle is directly obtained by dividing the two components,and then the triangular identity transformation method is used to linearly demodulate the magnetic rotation angle and reconstruct the current waveform.The experimental results show that the relative error of current measurement does not exceed 1.40%in the current range of 0.05—0.50 A,which is less than the approximate linear measurement(ALM)method,and the magnetic rotation angle and the current have a good linear relationship.展开更多
Objective to study an in vitro accurate measurement method for the placement depth of PICC. Methods 270 patients undergoing PICC catheterization under ultrasound guidance in outpatient PICC catheterization from March ...Objective to study an in vitro accurate measurement method for the placement depth of PICC. Methods 270 patients undergoing PICC catheterization under ultrasound guidance in outpatient PICC catheterization from March to September 2019 were selected by convenient sampling. By using the random number table method, the subjects were divided into group A (horizontal L-type measurement method) and Group B (characteristic index measurement calculation) by 1:1, with 135 cases in each group. X-ray chest radiograph was taken after catheterization in both groups, and the indwelling position of the catheter was adjusted according to the X-ray chest radiograph. The correlation between PICC predicted length and ideal depth and patient satisfaction were compared between the two groups. Results The success rate of PICC catheter tip insertion in group B was 97.78%, while that in control group A was 82.22%, the difference was statistically significant (P < 0.05). The satisfaction degree of patients in group B was significantly higher than that in group A. The differences were statistically significant (P < 0.05). Conclusion Improving the success rate of the precise depth of PICC catheter placement can significantly reduce the incidence of complications, waste of human and material resources caused by adjusting the catheter position, and significantly improve patient satisfaction.展开更多
In winter,the ice-covered conductors pose a significant influence to the safe operation of power grids.Despite extensive research in this area,measuring on-site ice accurately remains a major challenge.Obtaining accur...In winter,the ice-covered conductors pose a significant influence to the safe operation of power grids.Despite extensive research in this area,measuring on-site ice accurately remains a major challenge.Obtaining accurate data of ice thickness and density is the basis of ice disaster prevention and emergency treatment of power grids.The current measurement methods based on power line's tension and insulator string's inclination or video image are commonly used at power grids,which cannot accurately monitor the actual ice thickness,and also cannot measure ice density.Based on long-term natural icing field observations and extensive simulation tests conducted in the artificial climate chamber,this paper puts forward a new method for monitoring the ice thickness and density using the capacitance effect of ice layers due to their dielectric characteristics.Theoretical analysis and testing results demonstrate that the capacitance of an ice layer steadily increases with both increasing thickness and density,which can be used for accurate determination of changes of both the parameters mentioned above.Therefore,the proposed method based on the capacitance effect of ice layer on power lines can be used to monitor the ice thickness and density of power lines accurately.展开更多
Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements u...Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.展开更多
This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)tr...This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)triaxial test method,the present study investigated the shear strength behavior of silty clay under various shear rates and water saturation levels,and compared the outcomes with traditional suction-controlled(SC)and constant water content(CW)tests.The findingshighlight the pivotal role of excess pore water pressure dissipation during shearing,which significantlyaffects the shear strength of both saturated and unsaturated soils.Notably,for soils with high initial water saturation,a decrease in shear strength is observed with an increase in shear rate,which is attributed to the rise in pore water pressure.Conversely,for soils with low initial water saturation,the shear rate exhibits minimal impact on shear strength due to negligible water drainage.The research delineates the optimal shear rates for DV tests based on the initial water saturation:a slower rate of 0.0028 mm/min for samples with high water saturation(S_(r0)>66%)and a faster rate of 0.8 mm/min for samples with low water saturation(S_(r0)≤66%).A novel testing methodology for determining unsaturated soil shear strength under DV conditions is introduced,streamlining the measurement process and significantly reducing testing time.This method not only promises substantial cost savings but also aligns closely with natural engineering conditions,offering valuable guidance for geotechnical applications.展开更多
The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is ...The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is necessary to establish a specific evaluation indicator system that differs from those used for ordinary slopes.Based on the unascertained measure method,uncertainties in the indicator are addressed by introducing the left and right half cloud asymmetric cloud model to optimize the linear membership function.The subjectivity of confidence criterion level identification is also improved by using the Euclidean distance method.Thus,a stability evaluation model for the tunnel portal slope is established based on the improved unascertained measure method.Finally,using the collected tunnel portal slope data,the results of four evaluation methods are compared with the safety factor levels.The evaluation methods include the traditional unascertained measure method,the method improved by using the left and right half cloud asymmetric cloud model,the method improved by using the Euclidean distance method,and the method improved by using both the left and right half cloud asymmetric cloud model and the Euclidean distance method.The results show that the accuracy rates of these four methods are 50%,55%,85%,and 90%,respectively.Among them,the joint improvement method has the slightest deviation,with only one level,while the other three methods had deviations of two levels.This result verifies the stability and effectiveness of the joint improvement method,providing a reference for tunnel portal slope stability evaluation.展开更多
The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,mo...The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.展开更多
Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater dis...Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water.However,commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid,acetic acid,hydrogen peroxide,and water.During the process of water treatment,peroxyacetic acid and hydrogen peroxide(H2O2)often coexist,which limits further investigation on the properties ofperoxyacetic acid.Therefore,analytical methods need to achieve a certain level of selectivity,particularly when peroxyacetic acid and hydrogen peroxide coexist.This review summarizes the measurement and detection methods of peroxyacetic acid,comparing the principle,adaptability,and relative merits of these methods.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and mod...A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and model parameters are uncertain,so the output of temperature is non-steady-state.Many dynamic measurements are not steady so that it cannot be described by variables constant in time.In this paper,we adopt the monopulse signal as input so that the output of the bioreactor system is steady.This method has a powerful ability to steady the output of the bioreactor.In view of the measurement results,it can be seen that the model dynamic measurement approaches the real process.The analytical expression of the monopulse response for the temperature model of the bioreactor is obtained.The novel measurement approach is simple and can be easily adopted by industry.展开更多
Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examin...Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
基金supported by the National Natural Science Foundation of China (No.62076160)the Natural Science Foundation of Shanghai (No.21ZR1424700)。
文摘Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fields. In order to better evaluate the speckle, speckle measurement methods must be studied. In this study, a dynamic measurement method for laser speckles is proposed according to the optical superposition characteristics of speckle, which can reduce the influence of non-coherent factors on the speckle measurement results. The feasibility of the dynamic speckle measurement method is verified by designing an experimental scheme.
文摘Measuring multi-directional waves with the wave gauge array is one of the fundamental and easily realised methods. In this paper, the wave gauge array is described and the effects of the gauge spacing, the array orientations, etc. of the three array arrangements, i. e., linear array, T-type array and pentagon array, on the resolution of the directional spreading of waves, are investigated experimentally. This study can be used as a reference in the experimental study and the field measurement of directional waves.
文摘Rail irregularities, in particular for urban rail- way infrastructures, are one of the main causes for the generation of noise and vibrations. In addition, repetitive loading may also lead to decay of the structural elements of the rolling stock. This further causes an increase in main- tenance costs and reduction of service life. Monitoring these defects on a periodic basis enables the network rail managers to apply proactive measures to limit further damage. This paper discusses the measurement methods for rail corrugation with particular regard to the analysis tools for evaluating the thresholds of acceptability in re- lation to the tramway Italian transport system. Further- more, a method of analysis has been proposed: an application of the methodology used for treating road profiles has been also utilized for the data processing of rail profilometric data.
基金supported by the National Natural Science Foundation of China(Grant Nos.61871386,61971427,62035014,and 61921001)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Grant No.2019JJ20022)。
文摘In the terahertz band,the dispersive characteristic of dielectric material is one of the major problems in the scaled radar cross section(RCS)measurement,which is inconsistent with the electrodynamics similitude deducted according to the Maxwell’s equations.Based on the high-frequency estimation method of physical optics(PO),a scaled RCS measurement method for lossy objects is proposed through dynamically matching the reflection coefficients according to the distribution of the object facets.Simulations of the model of SLICY are conducted,and the inversed RCS of the lossy prototype is obtained using the proposed method.Comparing the inversed RCS with the calculated results,the validity of the proposed method is demonstrated.The proposed method provides an effective solution to the scaled RCS measurement for lossy objects in the THz band.
文摘Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.
文摘Method of VSC (Voltage Shorted Compaction)can be used to determine the intrinsic temperature dependence ofconductivity ofpolycrystalline compaction. The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.
基金Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University(KLSSM-200607)
文摘Through the experimental design and theoretical analysis, three technologies used for characterizing the two-photon absorption(TPA) properties, such as nonlinear transmission experiment and theory, Z-scan technology and two-photon induced fluorescence method, are introduced. The properties of the three experiments to be utilizable and realizable under desirable limitation are simply analyzed. The advantages of the measurements for TPA characterization are also analyzed.
基金sponsored by the Natural Science Foundation of Shandong Province (Y2007E09)Joint Earthquake Science Foundation (C08028)Special Application Research of Digital Seismic Wave Data ,Shangdong,China
文摘The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.
基金the Joint Guidance Project of Natural Science Foundation of Heilongjiang Province(No.LH2021F008)。
文摘Aiming at the approximate measurement of magnetic rotation angle in optical current sensor based on light intensity detection mode,this paper proposes a current measurement method based on triangular constant transformation to reconstruct magnetic rotation angle,so as to avoid the large current measurement error caused by the approximate measurement of the magnetic rotation angle.By extracting the direct current(DC)component and the alternating current(AC)component of the light intensity signal detected by the photoelectric detector(PD),the sine signal containing the magnetic rotation angle is directly obtained by dividing the two components,and then the triangular identity transformation method is used to linearly demodulate the magnetic rotation angle and reconstruct the current waveform.The experimental results show that the relative error of current measurement does not exceed 1.40%in the current range of 0.05—0.50 A,which is less than the approximate linear measurement(ALM)method,and the magnetic rotation angle and the current have a good linear relationship.
文摘Objective to study an in vitro accurate measurement method for the placement depth of PICC. Methods 270 patients undergoing PICC catheterization under ultrasound guidance in outpatient PICC catheterization from March to September 2019 were selected by convenient sampling. By using the random number table method, the subjects were divided into group A (horizontal L-type measurement method) and Group B (characteristic index measurement calculation) by 1:1, with 135 cases in each group. X-ray chest radiograph was taken after catheterization in both groups, and the indwelling position of the catheter was adjusted according to the X-ray chest radiograph. The correlation between PICC predicted length and ideal depth and patient satisfaction were compared between the two groups. Results The success rate of PICC catheter tip insertion in group B was 97.78%, while that in control group A was 82.22%, the difference was statistically significant (P < 0.05). The satisfaction degree of patients in group B was significantly higher than that in group A. The differences were statistically significant (P < 0.05). Conclusion Improving the success rate of the precise depth of PICC catheter placement can significantly reduce the incidence of complications, waste of human and material resources caused by adjusting the catheter position, and significantly improve patient satisfaction.
基金Natural Science Foundation,Grant/Award Numbers:51637002,52077018Chongqing technology innovation and application development special key program,Grant/Award Number:cstc2021jscx-dxwtBX0001。
文摘In winter,the ice-covered conductors pose a significant influence to the safe operation of power grids.Despite extensive research in this area,measuring on-site ice accurately remains a major challenge.Obtaining accurate data of ice thickness and density is the basis of ice disaster prevention and emergency treatment of power grids.The current measurement methods based on power line's tension and insulator string's inclination or video image are commonly used at power grids,which cannot accurately monitor the actual ice thickness,and also cannot measure ice density.Based on long-term natural icing field observations and extensive simulation tests conducted in the artificial climate chamber,this paper puts forward a new method for monitoring the ice thickness and density using the capacitance effect of ice layers due to their dielectric characteristics.Theoretical analysis and testing results demonstrate that the capacitance of an ice layer steadily increases with both increasing thickness and density,which can be used for accurate determination of changes of both the parameters mentioned above.Therefore,the proposed method based on the capacitance effect of ice layer on power lines can be used to monitor the ice thickness and density of power lines accurately.
基金supported by the Chinese Scholarship Council under Grant 202106910006.
文摘Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.
基金The authors are grateful for the Beijing Natural Science Foundation(Grant No.8242017)。
文摘This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)triaxial test method,the present study investigated the shear strength behavior of silty clay under various shear rates and water saturation levels,and compared the outcomes with traditional suction-controlled(SC)and constant water content(CW)tests.The findingshighlight the pivotal role of excess pore water pressure dissipation during shearing,which significantlyaffects the shear strength of both saturated and unsaturated soils.Notably,for soils with high initial water saturation,a decrease in shear strength is observed with an increase in shear rate,which is attributed to the rise in pore water pressure.Conversely,for soils with low initial water saturation,the shear rate exhibits minimal impact on shear strength due to negligible water drainage.The research delineates the optimal shear rates for DV tests based on the initial water saturation:a slower rate of 0.0028 mm/min for samples with high water saturation(S_(r0)>66%)and a faster rate of 0.8 mm/min for samples with low water saturation(S_(r0)≤66%).A novel testing methodology for determining unsaturated soil shear strength under DV conditions is introduced,streamlining the measurement process and significantly reducing testing time.This method not only promises substantial cost savings but also aligns closely with natural engineering conditions,offering valuable guidance for geotechnical applications.
基金supported by the National Natural Science Foundation of China(Grant No.42377191,42072300)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(Grant No.2023A0303).
文摘The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is necessary to establish a specific evaluation indicator system that differs from those used for ordinary slopes.Based on the unascertained measure method,uncertainties in the indicator are addressed by introducing the left and right half cloud asymmetric cloud model to optimize the linear membership function.The subjectivity of confidence criterion level identification is also improved by using the Euclidean distance method.Thus,a stability evaluation model for the tunnel portal slope is established based on the improved unascertained measure method.Finally,using the collected tunnel portal slope data,the results of four evaluation methods are compared with the safety factor levels.The evaluation methods include the traditional unascertained measure method,the method improved by using the left and right half cloud asymmetric cloud model,the method improved by using the Euclidean distance method,and the method improved by using both the left and right half cloud asymmetric cloud model and the Euclidean distance method.The results show that the accuracy rates of these four methods are 50%,55%,85%,and 90%,respectively.Among them,the joint improvement method has the slightest deviation,with only one level,while the other three methods had deviations of two levels.This result verifies the stability and effectiveness of the joint improvement method,providing a reference for tunnel portal slope stability evaluation.
基金co-supported by the National Key Research and Development Project of China(No.2018YFA0703304)the High-level Personnel Innovation Support Program of Dalian(No.2017RJ04)+2 种基金Youth Program of National Natural Science Foundation of China(No.51905077)Liaoning Revitalization Talents Program(No.XLYC1807086)China Postdoctoral Science Foundation Grand(No.2019M651110)。
文摘The accurate measurement of surfaces of large aviation components is vital for the assessment of manufacturing and assembly quality of such components.To satisfy the measurement requirement of large-size components,most current researches pay more attention to combined measurement methods utilizing different measuring instruments,but the related researches on error analysis and optimization methods are not taken enough attention.This paper proposes a combined laser-assisted measurement method with feature enhancement techniques,and it also develops an error propagation model of the main factors affecting the overall measurement error in detail.Firstly,the surface of a large-size component is measured by the measurement system at multiple stations.Secondly,a control point coordinate system is established as a bridge to unify all local measurement data into the global coordinate system.To improve the overall measurement accuracy,the pixel extraction error as a key factor causing the overall measurement error is analyzed in detail.Next,the error propagation model is established,and some optimization strategies of layout for minimizing measurement error and transformation error are researched.Finally,experiments are carried out to verify the effectiveness of the proposed method.The results show that the measurement error of the proposed method reaches 0.073%and 0.14%with a 1 D standard ruler and a flat plate,respectively.
基金We acknowledge supports from National Key Basic Research Program of China(Grant No.2019YFA0705800)National Natural Science Foundation of China(Nos.21876049 and 91834301).The authors show deep gratitude to Mr.Casey Finnerty from UC Berkeley on polishing the manuscript.
文摘Peroxyacetic acid has been widely used in food,medical,and synthetic chemical fields for the past several decades.Recently,peroxyacetic acid has gradually become an effective alternative disinfectant in wastewater disinfection and has strong redox capacity for removing micro-pollutants from drinking water.However,commercial peroxyacetic acid solutions are primarily multi-component mixtures of peroxyacetic acid,acetic acid,hydrogen peroxide,and water.During the process of water treatment,peroxyacetic acid and hydrogen peroxide(H2O2)often coexist,which limits further investigation on the properties ofperoxyacetic acid.Therefore,analytical methods need to achieve a certain level of selectivity,particularly when peroxyacetic acid and hydrogen peroxide coexist.This review summarizes the measurement and detection methods of peroxyacetic acid,comparing the principle,adaptability,and relative merits of these methods.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金This work was supported by the National High Technology Research and Development Program of China(No.2004AA412050).
文摘A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and model parameters are uncertain,so the output of temperature is non-steady-state.Many dynamic measurements are not steady so that it cannot be described by variables constant in time.In this paper,we adopt the monopulse signal as input so that the output of the bioreactor system is steady.This method has a powerful ability to steady the output of the bioreactor.In view of the measurement results,it can be seen that the model dynamic measurement approaches the real process.The analytical expression of the monopulse response for the temperature model of the bioreactor is obtained.The novel measurement approach is simple and can be easily adopted by industry.
基金supported by the National Natural Science Foundation of China(11004214,10574137)
文摘Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.