目的研究葛根素对氧糖剥夺(oxygen and glucose deprivation,OGD)血管性痴呆细胞模型细胞黏附分子(CaM)、钙调蛋白激酶Ⅱ(CaMKⅡ)、脑源性神经营养因子(BDNF)及Akt表达的影响。方法选取生长良好的PC12细胞传代、分化,行OGD准备血管性痴...目的研究葛根素对氧糖剥夺(oxygen and glucose deprivation,OGD)血管性痴呆细胞模型细胞黏附分子(CaM)、钙调蛋白激酶Ⅱ(CaMKⅡ)、脑源性神经营养因子(BDNF)及Akt表达的影响。方法选取生长良好的PC12细胞传代、分化,行OGD准备血管性痴呆细胞模型,随机分为对照组、模型组及低、中、高剂量葛根素组。MTT法测定细胞存活率并确定合适的葛根素干预浓度及OGD处理时间;检测乳酸脱氢酶(LDH)释放量评定细胞损伤程度,鉴定细胞模型;Western blot检测CaM、CaMKⅡ、MECP2、BDNF及Akt蛋白的表达水平。结果 PC12细胞存活率随OGD时间延长而逐渐降低,呈时间依赖性;PC12细胞存活率随葛根素浓度增加而逐渐升高,呈浓度依赖性。葛根素有效干预浓度为0.1~10μmol/L;OGD最佳处理时间为6h。与对照组相比,模型组LDH释放量明显增高(P<0.05);葛根素干预组LDH释放量随葛根素浓度增加而减少(P<0.05)。模型组CaM蛋白表达明显升高,BDNF表达量明显减少(P<0.05),MECP2表达及CaMKⅡ、Akt蛋白磷酸化水平均未见明显变化(P>0.05)。葛根素干预可下调CaM蛋白水平,提高MECP2、BDNF的表达及CaMKⅡ磷酸化水平,中、高剂量葛根素组亦能升高Akt蛋白磷酸化水平(P<0.05)。结论葛根素可能通过提高Ca2+-CaM复合物介导CaMKⅡ自身磷酸化水平,诱导MECP2磷酸化,上调BDNF的表达,激活下游PI3K-Akt通路,抑制凋亡基因及蛋白表达,发挥神经保护作用。展开更多
Abnormal synchronous neuronal activity has been widely detected by brain imaging of autistic patients,but its underlying neural mechanism remains unclear.Compared with wild-type mice,our in vivo two-photon imaging sho...Abnormal synchronous neuronal activity has been widely detected by brain imaging of autistic patients,but its underlying neural mechanism remains unclear.Compared with wild-type mice,our in vivo two-photon imaging showed that transgenic(Tgl)mice over-expressing human autism risk gene MeCP2 exhibited higher neuronal synchrony in the young but lower synchrony in the adult stage.Whole-cell recording of neuronal pairs in brain slices revealed that higher neuronal synchrony in young postnatal Tgl mice was atributed mainly to more prevalent giant slow inward currents(SICs).Both in vivo and slice imaging further demonstrated more dynamic activity and higher synchrony in astrocytes from young Tgl mice.Blocking astrocytic gap junctions markedly decreased the generation of SICs and overall cell synchrony in the Tgl brain.Furthermore,the expression level of Cx43 protein and the coupling efficiency of astrocyte gap junctions remained unchanged in Tgi mice.Thus,astrocytic gap junctions facilitate but do not act as a direct trigger for the abnormal neuronal synchrony in young Tgl mice,revealing the potential role of the astrocyte network in the pathogenesis of MeCP2 duplication syndrome.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32010100)a National Natural Science Foundation of China project(31671113)+1 种基金a Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)and the State Key Laboratory of Neuroscience.
文摘Abnormal synchronous neuronal activity has been widely detected by brain imaging of autistic patients,but its underlying neural mechanism remains unclear.Compared with wild-type mice,our in vivo two-photon imaging showed that transgenic(Tgl)mice over-expressing human autism risk gene MeCP2 exhibited higher neuronal synchrony in the young but lower synchrony in the adult stage.Whole-cell recording of neuronal pairs in brain slices revealed that higher neuronal synchrony in young postnatal Tgl mice was atributed mainly to more prevalent giant slow inward currents(SICs).Both in vivo and slice imaging further demonstrated more dynamic activity and higher synchrony in astrocytes from young Tgl mice.Blocking astrocytic gap junctions markedly decreased the generation of SICs and overall cell synchrony in the Tgl brain.Furthermore,the expression level of Cx43 protein and the coupling efficiency of astrocyte gap junctions remained unchanged in Tgi mice.Thus,astrocytic gap junctions facilitate but do not act as a direct trigger for the abnormal neuronal synchrony in young Tgl mice,revealing the potential role of the astrocyte network in the pathogenesis of MeCP2 duplication syndrome.