The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by...The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by recycled ones. The isotropic model by Mazars was used as a constitutive equation for the CDW concrete and its adjustment parameters, A and B, were written as quadratic polynomials according to the aggregates replacement rate. The model was evaluated for conventional and recycled concretes. For the latter ones, the aggregates replacement ratios evaluated were 50% and 100%. The results show good approximation between the analytical and numerical values obtained with the adapted isotropic damage model and experimental concrete results for both compressive and flexural strength.展开更多
Damage reliability analysis is an emerging field of structural engineering which is very significant in structures of great importance like arch dams, large concrete gravity dams etc. The research objective is to desi...Damage reliability analysis is an emerging field of structural engineering which is very significant in structures of great importance like arch dams, large concrete gravity dams etc. The research objective is to design and construct an improved method for damage reliability analysis for concrete gravity dam. Firstly, pseudo excitation method and Mazar damage model were used to analyze how to calculate damage expected value excited by random seismic loading and deterministic static load on the condition that initial elastic modulus was deterministic. Moreover, response surface method was improved from the aspects of the regression of sample points, the selection of experimental points, the determined method of weight matrix and the calculation method of checking point respectively. Then, the above method was used to analyze guarantee rate of damage expected value excited by random seismic loading and deterministic static load on the condition that initial elastic modulus was random. Finally, a test example was given to verify and analyze the convergence and stability of this method. Compared with other conventional algorithm, this method has some strong points: this algorithm has good convergence and stability and greatly enhances calculation efficiency and the storage efficiency. From what has been analyzed, we find that damage expected value is insensitive to the randomness of initial elastic modulus so we can neglect the randomness of initial elastic modulus in some extent when we calculate damage expected value.展开更多
文摘The main goal of this paper is to describe the mechanical behavior of the CDW recycled concrete in compression, using an isotropic damage model adapted to the variation of the replacement rate of natural aggregates by recycled ones. The isotropic model by Mazars was used as a constitutive equation for the CDW concrete and its adjustment parameters, A and B, were written as quadratic polynomials according to the aggregates replacement rate. The model was evaluated for conventional and recycled concretes. For the latter ones, the aggregates replacement ratios evaluated were 50% and 100%. The results show good approximation between the analytical and numerical values obtained with the adapted isotropic damage model and experimental concrete results for both compressive and flexural strength.
文摘Damage reliability analysis is an emerging field of structural engineering which is very significant in structures of great importance like arch dams, large concrete gravity dams etc. The research objective is to design and construct an improved method for damage reliability analysis for concrete gravity dam. Firstly, pseudo excitation method and Mazar damage model were used to analyze how to calculate damage expected value excited by random seismic loading and deterministic static load on the condition that initial elastic modulus was deterministic. Moreover, response surface method was improved from the aspects of the regression of sample points, the selection of experimental points, the determined method of weight matrix and the calculation method of checking point respectively. Then, the above method was used to analyze guarantee rate of damage expected value excited by random seismic loading and deterministic static load on the condition that initial elastic modulus was random. Finally, a test example was given to verify and analyze the convergence and stability of this method. Compared with other conventional algorithm, this method has some strong points: this algorithm has good convergence and stability and greatly enhances calculation efficiency and the storage efficiency. From what has been analyzed, we find that damage expected value is insensitive to the randomness of initial elastic modulus so we can neglect the randomness of initial elastic modulus in some extent when we calculate damage expected value.