期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Maximal subalgebras of the general linear Lie algebra containing Cartan subalgebras 被引量:2
1
作者 WANGDengYin GEHui LIXiaoWei 《Science China Mathematics》 SCIE 2012年第7期1381-1386,共6页
Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebr... Let gl,,(R) be the general linear Lie algebra of all n×n matrices over a unital commutative ring R with 2 invertible, dn(R) be the Cartan subalgebra of gln(R) of all diagonal matrices. The maximal subalgebras of gln(R) that contain dn(F:) are classified completely. 展开更多
关键词 maximal subalgebras the general linear Lie algebra Cartan subalgebras unital commutativerings
原文传递
Maximal Graded Subalgebras of the General Linear Lie Superalgebras over Superrings 被引量:1
2
作者 Yang LI Wende LIU 《Journal of Mathematical Research with Applications》 CSCD 2015年第2期149-156,共8页
In this paper, we determine all maximal graded subalgebras of the general linear Lie superalgebras containing the standard Cartan subalgebras over a unital supercommutative superring with 2 invertible.
关键词 maximal graded subalgebras general linear Lie superalgebras supercommutativesuperrings
原文传递
Maps Preserving Zero Lie Brackets on a Maximal Nilpotent Subalgebra of the Symplectic Algebra 被引量:1
3
作者 Yan Xia ZHAO Deng Yin WANG Dong Fang JIA 《Journal of Mathematical Research and Exposition》 CSCD 2011年第5期829-839,共11页
Let F be a field with char F = 2, l a maximal nilpotent subalgebra of the symplectic algebra sp(2m,F). In this paper, we characterize linear maps of l which preserve zero Lie brackets in both directions. It is shown... Let F be a field with char F = 2, l a maximal nilpotent subalgebra of the symplectic algebra sp(2m,F). In this paper, we characterize linear maps of l which preserve zero Lie brackets in both directions. It is shown that for m ≥ 4, a map φ of l preserves zero Lie brackets in both directions if and only if φ = ψcσT0λαφdηf, where ψc,σT0,λα,φd,ηf are the standard maps preserving zero Lie brackets in both directions. 展开更多
关键词 maximal nilpotent subalgebra zero Lie brackets symplectic algebra.
在线阅读 下载PDF
Maximal Abelian Subalgebras of the Hyperfinite Factor,Entropy and Ergodic Theory
4
作者 S.NESHVEYEV E.STORMER 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第3期599-604,共6页
Given a free ergodic action of a discrete abelian group G on a measure space (X, 7), the crossed product LX (X, 7)p G contains two distinguished maximal abelian subalgebras. We discuss what kind of information about t... Given a free ergodic action of a discrete abelian group G on a measure space (X, 7), the crossed product LX (X, 7)p G contains two distinguished maximal abelian subalgebras. We discuss what kind of information about the action can be extracted from the positions of these two subalgebras inside the crossed product algebra. 展开更多
关键词 Hyperfinite facter maximal abelian subalgebra Dynamical system ENTROPY
原文传递
On maximal injective subalgebras in a wΓ factor
5
作者 HOU ChengJun School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China 《Science China Mathematics》 SCIE 2008年第11期2089-2096,共8页
Let $ \mathcal{L} $ (F ?) × α ? be the crossed product von Neumann algebra of the free group factor $ \mathcal{L} $ (F ?), associated with the left regular representation λ of the free group F ? with the set {u... Let $ \mathcal{L} $ (F ?) × α ? be the crossed product von Neumann algebra of the free group factor $ \mathcal{L} $ (F ?), associated with the left regular representation λ of the free group F ? with the set {u r : r ∈ ?} of generators, by an automorphism α defined by α(λ(u r )) = exp(2πri)λ(u r ), where ? is the rational number set. We show that $ \mathcal{L} $ (F ?) × α ? is a wΓ factor, and for each r ∈ ?, the von Neumann subalgebra $ \mathcal{A}_r $ generated in $ \mathcal{L} $ (F ?) × α ? by λ(u r ) and υ is maximal injective, where υ is the unitary implementing the automorphism α. In particular, $ \mathcal{L} $ (F ?) × α ? is a wΓ factor with a maximal abelian selfadjoint subalgebra $ \mathcal{A}_0 $ which cannot be contained in any hyperfinite type II1 subfactor of $ \mathcal{L} $ (F ?) × α ?. This gives a counterexample of Kadison’s problem in the case of wΓ factor. 展开更多
关键词 von Neumann algebra maximal injective subalgebra crossed product factor 46L10
原文传递
Maximal von Neumann subalgebras arising from maximal subgroups
6
作者 Yongle Jiang 《Science China Mathematics》 SCIE CSCD 2021年第10期2295-2312,共18页
Ge(2003)asked the question whether LF∞can be embedded into LF2 as a maximal subfactor.We answer it affirmatively with three different approaches,all containing the same key ingredient:the existence of maximal subgrou... Ge(2003)asked the question whether LF∞can be embedded into LF2 as a maximal subfactor.We answer it affirmatively with three different approaches,all containing the same key ingredient:the existence of maximal subgroups with infinite index.We also show that point stabilizer subgroups for every faithful,4-transitive action on an infinite set give rise to maximal von Neumann subalgebras.By combining this with the known results on constructing faithful,highly transitive actions,we get many maximal von Neumann subalgebras arising from maximal subgroups with infinite index. 展开更多
关键词 maximal von Neumann subalgebra maximal subfactor maximal subgroup highly transitive action rigid subalgebra
原文传递
On Maximal Abelian Self-adjoint Subalgebras of Factors of Type II_1
7
作者 Li Guang WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第3期569-576,共8页
In this note, we show that if N is a proper subfactor of a factor M of type Ⅱ1 with finite Jones index, then there is a maximal abelian self-adjoint subalgebra (masa) A of N that is not a masa in ,M. Popa showed th... In this note, we show that if N is a proper subfactor of a factor M of type Ⅱ1 with finite Jones index, then there is a maximal abelian self-adjoint subalgebra (masa) A of N that is not a masa in ,M. Popa showed that there is a proper subfactor R0 of the hyperfinite type Ⅱ1 factor R such that each masa in R0 is also a masa in R. We shall give a detailed proof of Popa's result. 展开更多
关键词 maximal abelian self-adjoint subalgebra Index Von Neumann algebra Factor Conditional expectation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部