In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjust...In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.展开更多
A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to...A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.展开更多
Max-plus algebra has been widely used in the study of discrete-event dynamic systems.Using max-plus algebra makes it easy to specify safety constraints on events since they can be described as a set of inequalities of...Max-plus algebra has been widely used in the study of discrete-event dynamic systems.Using max-plus algebra makes it easy to specify safety constraints on events since they can be described as a set of inequalities of state variables,i.e.,firing times of relevant events.This paper proves that the problem of solving max-plus inequalities in a cube(MAXINEQ)is nondeterministic polynomial-time hard(NP-hard)in strong sense and the problem of verifying max-plus inequalities(VERMAXINEQ)is co-NP.As a corollary,the problem of solving a system of multivariate max-algebraic polynomial equalities and inequalities(MPEI)is shown to be NP-hard in strong sense.The results indicate the difficulties in comparing max-plus formulas in general.Problem structures of specific systems have to be explored to enable the development of efficient algorithms.展开更多
Loday introduced di-associative algebras and tri-associative algebras motivated by periodicity phenomena in algebraic K-theory.The purpose of this paper is to study the splittings of operations on di-associative algeb...Loday introduced di-associative algebras and tri-associative algebras motivated by periodicity phenomena in algebraic K-theory.The purpose of this paper is to study the splittings of operations on di-associative algebras and tri-associative algebras.We introduce the notion of a quad-dendriform algebra,which is a splitting of a di-associative algebra.We show that a relative averaging operator on dendriform algebras gives rise to a quad-dendriform algebra.Furthermore,we introduce the notion of six-dendriform algebras,which are splittings of the tri-associative algebras,and demonstrate that homomorphic relative averaging operators induce six-dendriform algebras.展开更多
This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in whi...This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.展开更多
Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the...Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.展开更多
In this paper,we show that an ideal generated by matching Rota-Baxter equations is a bideal of a Hopf algebra on decorated rooted forests.We then get a bialgebraic structure on the space of decorated rooted forests mo...In this paper,we show that an ideal generated by matching Rota-Baxter equations is a bideal of a Hopf algebra on decorated rooted forests.We then get a bialgebraic structure on the space of decorated rooted forests modulo this biideal.As an application,a connected graded bialgebra and so a graded Hopf algebra on matching Rota-Baxter algebras are constructed,which simplifies the Hopf algebraic structure proposed by[Pacific J.Math.,2022,317(2):441-475].展开更多
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yet...Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.展开更多
A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form(i.e.,a skew-symmetric quadratic Leibniz algebra)is constructed.The notion of T^(*)-extension of Lie-Yamaguti algebras is int...A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form(i.e.,a skew-symmetric quadratic Leibniz algebra)is constructed.The notion of T^(*)-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra.It is proved that every symmetric(resp.,skew-symmetric)quadratic Leibniz algebra induces a quadratic(resp.,symplectic)LieYamaguti algebra.展开更多
A bottleneck algebra is a linearly ordered set(B,≤)with two operations a⊕b=max{a,b}and a⊗b=min{a,b}.A finite nonempty set of vectors of order m over a bottleneck algebra B is said to be 2 B-independent if each vecto...A bottleneck algebra is a linearly ordered set(B,≤)with two operations a⊕b=max{a,b}and a⊗b=min{a,b}.A finite nonempty set of vectors of order m over a bottleneck algebra B is said to be 2 B-independent if each vector of order m over B can be expressed as a linear combination of vectors in this set in at most one way.In 1996,Cechlárováand Plávka posed an open problem:Find a necessary and sufficient condition for a finite nonempty set of vectors of order m over B to be 2 B-independent.In this paper,we derive some necessary and sufficient conditions for a finite nonempty set of vectors of order m over a bounded bottleneck algebra to be 2 B-independent and answer this open problem.展开更多
In this paper,we study anti-derivations and anti-left multipliers.For a class of algebras,which contains triangular algebras,matrix algebras,embedded algebras,Cuntz algebras,nest algebras,P-lattice algebras,and linear...In this paper,we study anti-derivations and anti-left multipliers.For a class of algebras,which contains triangular algebras,matrix algebras,embedded algebras,Cuntz algebras,nest algebras,P-lattice algebras,and linear transformation algebras L(X),we show that every anti-left multiplier on these algebras is zero.Furthermore,let A be a zero product determined algebra andδbe a linear mapping from A into itself,satisfying that for any a,b in A,ab=0 impliesδ(b)a+bδ(a)=0.We show thatδ(x)=D(x)+δ(1)x,where D is an anti-derivation andδ(1)∈Z(A).展开更多
基金supported by the National Natural Science Foundation of China (61973230)Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S03)。
文摘In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.
文摘A discrete event system is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Timed Petri nets are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution where the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event system is its stability. Lyapunov theory provides the required tools needed to aboard the stability and stabilization problems for discrete event systems modeled with timed Petri nets whose mathematical model is given in terms of difference equations. By proving stability one guarantees a bound on the discrete event systems state dynamics. When the system is unstable, a sufficient condition to stabilize the system is given. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is achieved. However, the restriction is not numerically precisely known. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.
基金supported by the National Natural Science Foundation of China (Grant Nos.60574067 and 60721003).
文摘Max-plus algebra has been widely used in the study of discrete-event dynamic systems.Using max-plus algebra makes it easy to specify safety constraints on events since they can be described as a set of inequalities of state variables,i.e.,firing times of relevant events.This paper proves that the problem of solving max-plus inequalities in a cube(MAXINEQ)is nondeterministic polynomial-time hard(NP-hard)in strong sense and the problem of verifying max-plus inequalities(VERMAXINEQ)is co-NP.As a corollary,the problem of solving a system of multivariate max-algebraic polynomial equalities and inequalities(MPEI)is shown to be NP-hard in strong sense.The results indicate the difficulties in comparing max-plus formulas in general.Problem structures of specific systems have to be explored to enable the development of efficient algorithms.
基金Supported by the Science and Technology Program of Guizhou Province(Grant No.QKHJC QN[2025]362)the National Natural Science Foundation of China(Grant No.12361005).
文摘Loday introduced di-associative algebras and tri-associative algebras motivated by periodicity phenomena in algebraic K-theory.The purpose of this paper is to study the splittings of operations on di-associative algebras and tri-associative algebras.We introduce the notion of a quad-dendriform algebra,which is a splitting of a di-associative algebra.We show that a relative averaging operator on dendriform algebras gives rise to a quad-dendriform algebra.Furthermore,we introduce the notion of six-dendriform algebras,which are splittings of the tri-associative algebras,and demonstrate that homomorphic relative averaging operators induce six-dendriform algebras.
文摘This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.
基金Supported by the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province(Grant No.2023013)the National Natural Science Foundation of China(Grant No.12161013)the Science and Technology Program of Guizhou Province(Grant No.ZK[2023]025)。
文摘Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.
基金Supported by NSFC(No.12101316)Belt and Road Innovative Talents Exchange Foreign Experts project(No.DL2023014002L)。
文摘In this paper,we show that an ideal generated by matching Rota-Baxter equations is a bideal of a Hopf algebra on decorated rooted forests.We then get a bialgebraic structure on the space of decorated rooted forests modulo this biideal.As an application,a connected graded bialgebra and so a graded Hopf algebra on matching Rota-Baxter algebras are constructed,which simplifies the Hopf algebraic structure proposed by[Pacific J.Math.,2022,317(2):441-475].
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
基金Supported by the Fundamental Research Program of Shanxi Province(Grant No.202303021212147)the National Natural Science Foundation of China(Grant No.12471038)。
文摘Let D(n)be the finite dimensional non-pointed and non-semisimple Hopf algebra,which is a quotient of a prime Hopf algebras of GK-dimension one for an odd number n>1.In this paper,we investigate the structure of Yetter-Drinfeld simple modules over D(n)and give iso-classes of them.
文摘A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form(i.e.,a skew-symmetric quadratic Leibniz algebra)is constructed.The notion of T^(*)-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra.It is proved that every symmetric(resp.,skew-symmetric)quadratic Leibniz algebra induces a quadratic(resp.,symplectic)LieYamaguti algebra.
基金Supported by National Natural Science Foundation of China(Grant Nos.11771004 and 11971111).
文摘A bottleneck algebra is a linearly ordered set(B,≤)with two operations a⊕b=max{a,b}and a⊗b=min{a,b}.A finite nonempty set of vectors of order m over a bottleneck algebra B is said to be 2 B-independent if each vector of order m over B can be expressed as a linear combination of vectors in this set in at most one way.In 1996,Cechlárováand Plávka posed an open problem:Find a necessary and sufficient condition for a finite nonempty set of vectors of order m over B to be 2 B-independent.In this paper,we derive some necessary and sufficient conditions for a finite nonempty set of vectors of order m over a bounded bottleneck algebra to be 2 B-independent and answer this open problem.
基金Supported by the General Program of Shanghai Natural Science Foundation(Grant No.24ZR1415600)the National Natural Science Foundation of China(Grant Nos.1232637412401157)。
文摘In this paper,we study anti-derivations and anti-left multipliers.For a class of algebras,which contains triangular algebras,matrix algebras,embedded algebras,Cuntz algebras,nest algebras,P-lattice algebras,and linear transformation algebras L(X),we show that every anti-left multiplier on these algebras is zero.Furthermore,let A be a zero product determined algebra andδbe a linear mapping from A into itself,satisfying that for any a,b in A,ab=0 impliesδ(b)a+bδ(a)=0.We show thatδ(x)=D(x)+δ(1)x,where D is an anti-derivation andδ(1)∈Z(A).