The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu...The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.展开更多
文摘The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.
文摘空间聚类是空间数据挖掘的重要手段之一。本文研究了一种基于质心点距离的Max-min distance空间聚类算法:通过加载园地图斑数据,计算其园地图斑质心,判断聚类中心之间的距离,并将符合条件的园地图斑进行聚类,最终将聚类结果可视化表达。本文的算法是利用Visual Studio 2017实验平台和ArcGIS Engine组件式开发环境,采用C#语言进行编写。实验结果表明:1)Max-mindistance聚类通过启发式的选择簇中心,克服了K-means选择簇中心过于邻近的缺点,能够适应嵩口镇等山区丘陵地区空间分布呈破碎的园地数据集分布,有效地实现园地的合理聚类;2)根据连片面积将园地空间聚类结果分为大中小三类,未来嵩口镇可以重点发展园地连片规模较大的村庄,形成规模化的青梅种植园。