BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors...BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors is their penetration of neighboring tissues,such as lymphatic and blood arteries,due to the tumor cells'capacity to break down the extracellular matrix(ECM).Matrix metalloproteinases(MMPs)constitute a family of proteolytic enzymes that facilitate tissue remodeling and the degradation of the ECM.MMP-9 and MMP-13 belong to the group of extracellular matrix degrading enzymes and their expression has been studied in OSCC because of their specific functions.MMP-13,a collagenase family member,is thought to play an essential role in the MMP activation cascade by breaking down the fibrillar collagens,whereas MMP-9 is thought to accelerate the growth of tumors.Elevated MMP-13 expression has been associated with tumor behavior and patient prognosis in a number of malignant cases.AIM To assess the immunohistochemical expression of MMP-9 and MMP-13 in OSCC.METHODS A total of 40 cases with histologically confirmed OSCC by incisional biopsy were included in this cross-sectional retrospective study.The protocols for both MMP-9 and MMP-13 immunohistochemical staining were performed according to the manufacturer’s recommendations along with the normal gingival epithelium as a positive control.All the observations were recorded and Pearson’sχ²test with Fisher exact test was used for statistical analysis.RESULTS Our study showed no significant correlation between MMP-9 and MMP-13 staining intensity and tumor size.The majority of the patients were in advanced TNM stages(III and IV),and showed intense expression of MMP-9 and MMP-13.CONCLUSION The present study suggests that both MMP-9 and MMP-13 play an important and independent role in OSCC progression and invasiveness.Intense expression of MMP-9 and MMP-13,irrespective of histological grade of OSCC,correlates well with TNM stage.Consequently,it is evident that MMP-9 and MMP-13 are important for the invasiveness and progression of tumors.The findings may facilitate the development of new approaches for evaluating lymph node metastases and interventional therapy techniques,hence enhancing the prognosis of patients diagnosed with OSCC.展开更多
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali...SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.展开更多
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
Increased matrix stiffness of nucleus pulposus(NP)tissue is a main feature of intervertebral disc degeneration(IVDD)and affects various functions of nucleus pulposus cells(NPCs).Glycolysis is the main energy source fo...Increased matrix stiffness of nucleus pulposus(NP)tissue is a main feature of intervertebral disc degeneration(IVDD)and affects various functions of nucleus pulposus cells(NPCs).Glycolysis is the main energy source for NPC survival,but the effects and underlying mechanisms of increased extracellular matrix(ECM)stiffness on NPC glycolysis remain unknown.In this study,hydrogels with different stiffness were established to mimic the mechanical environment of NPCs.Notably,increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis,and NPCs cultured on rigid substrates exhibited a reduction in glycolysis.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,...Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.展开更多
Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredien...Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredient.The anti-aging effect of ginsenosides is considered to be one of the important roles of ginsenosides,and Compound K,as the main deglycosylated metabolite of ginsenosides,has a comprehensive anti-aging effect as a highly active ingredient obtained by transformation under the action of microbiota.Recent studies have shown that ginsenosides have anti-photo-oxidation,anti-skin aging,free radical scavenging and immunostimulatory effects,which can effectively prevent skin photoaging.With the progress of modern natural medicine extraction technology and the deepening of the research on the anti-skin aging of ginsenosides'high active ingredients,it will promote the development and application of natural product protective skin photoaging preparations.The rare ginsenoside Compound K plays an important role in the improvement of skin health and anti-aging,which is mainly realized by increasing the activity of antioxidant enzymes,inducing the expression of related genes,reducing the content of oxidative damage substances,regulating the immune system,and influencing the expression of cell-cycle regulators and aging genes.A more comprehensive and in-depth study of the molecular mechanism of the anti-aging effect of rare ginsenoside Compound K will be one of the focuses of future research.展开更多
CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and ...CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.展开更多
The dissolved organic matter(DOM)with high mobility and reactivity plays a crucial role in soil.In this study,the characteristics and phytotoxicity ofDOMreleased fromthe hydrochars prepared from different feedstocks(c...The dissolved organic matter(DOM)with high mobility and reactivity plays a crucial role in soil.In this study,the characteristics and phytotoxicity ofDOMreleased fromthe hydrochars prepared from different feedstocks(cowmanure,corn stalk and Myriophyllum aquaticum)under three hydrothermal carbonization(HTC)temperatures(180,200 and 220°C)were evaluated.The results showed that the hydrochars had high dissolved organic carbon content(20.15 to 37.65 mg/g)and its content showed a gradual reduction as HTC temperature increased.Three fluorescent components including mixed substance of fulvic acid-like and humic acid-like substances(C1,30.92%-58.32%),UVA humic acid-like substance(C2,25.27%-29.94%)and protein-like substance(C3,11.74%-41.92%)were identified in hydrochar DOM by excitation emission matrix spectra coupled with parallel factor analysis.High HTC temperature increased the relative proportion of aromatic substances(C1+C2)and humification degree of hydrochar DOM from cow manure,while it presented adverse effects on the hydrochar DOM from corn stalk and Myriophyllum.aquaticum.The principal component analysis suggested that feedstock type and HTC temperature posed significant effects on the characteristics of hydrochar DOM.Additionally,seed germination test of all hydrochar DOM demonstrated that the root length was reduced by 8.88%-26.43%in contrast with control,and the germination index values were 73.57%-91.12%.These findings provided new insights into the potential environmental effects for hydrochar application in soil.展开更多
Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excell...Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains...Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
To obtain the Ti_(p)with different aspect ratios,the Ti_(p)/Mg-5Zn-0.3Ca composite prepared by semi-solid stir casting was subjected to extrusion at 220℃,180℃,and 140℃,respectively.Then,the effect of the Ti_(p)’s ...To obtain the Ti_(p)with different aspect ratios,the Ti_(p)/Mg-5Zn-0.3Ca composite prepared by semi-solid stir casting was subjected to extrusion at 220℃,180℃,and 140℃,respectively.Then,the effect of the Ti_(p)’s aspect ratio on the microstructure,mechanical properties,work hardening and softening behaviors of Ti_(p)/Mg-5Zn-0.3Ca composites was investigated.The results indicated that the Ti_(p)could be elongated obviously after low-temperature extrusion,and the aspect ratio of which would reach to 13.7:1 as the extrusion temperature deceased to 140℃.Then the“Ti/Mg”layer-like structure was formed in the Ti_(p)/Mg-5Zn-0.3Ca composite.Accompanied with the elongation of Ti_(p),the dynamic recrystallized grains and dynamic precipitates were both refined significantly,however,the dynamic recrystallization rate changed a little.The elongated Ti_(p)endowed the Ti_(p)/Mg-5Zn-0.3Ca composites with better matching of strength and toughness without the sacrifice of elongation and bending strain.Both the work hardening rate and softening rate of Ti_(p)/Mg-5Zn-0.3Ca composites increased with the increasing aspect ratio of Ti_(p).The formation of“Ti/Mg”layer-like structure contributed to the redistribution of strain from large aggregations to a network-like distribution,which effectively suppresses the initiation and propagation of micro-cracks,thus enhancing the plasticity of the Ti_(p)/Mg-5Zn-0.3Ca composites.展开更多
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon...Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
文摘BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors is their penetration of neighboring tissues,such as lymphatic and blood arteries,due to the tumor cells'capacity to break down the extracellular matrix(ECM).Matrix metalloproteinases(MMPs)constitute a family of proteolytic enzymes that facilitate tissue remodeling and the degradation of the ECM.MMP-9 and MMP-13 belong to the group of extracellular matrix degrading enzymes and their expression has been studied in OSCC because of their specific functions.MMP-13,a collagenase family member,is thought to play an essential role in the MMP activation cascade by breaking down the fibrillar collagens,whereas MMP-9 is thought to accelerate the growth of tumors.Elevated MMP-13 expression has been associated with tumor behavior and patient prognosis in a number of malignant cases.AIM To assess the immunohistochemical expression of MMP-9 and MMP-13 in OSCC.METHODS A total of 40 cases with histologically confirmed OSCC by incisional biopsy were included in this cross-sectional retrospective study.The protocols for both MMP-9 and MMP-13 immunohistochemical staining were performed according to the manufacturer’s recommendations along with the normal gingival epithelium as a positive control.All the observations were recorded and Pearson’sχ²test with Fisher exact test was used for statistical analysis.RESULTS Our study showed no significant correlation between MMP-9 and MMP-13 staining intensity and tumor size.The majority of the patients were in advanced TNM stages(III and IV),and showed intense expression of MMP-9 and MMP-13.CONCLUSION The present study suggests that both MMP-9 and MMP-13 play an important and independent role in OSCC progression and invasiveness.Intense expression of MMP-9 and MMP-13,irrespective of histological grade of OSCC,correlates well with TNM stage.Consequently,it is evident that MMP-9 and MMP-13 are important for the invasiveness and progression of tumors.The findings may facilitate the development of new approaches for evaluating lymph node metastases and interventional therapy techniques,hence enhancing the prognosis of patients diagnosed with OSCC.
基金the support of the Xingliao Talent Program of Liaoning Province(No.XLYC2001004)the High Level Talents Innovation Plan of Dalian(No.2020RD02)the Fundamental Research Funds for the Central Universities(No.DUT22LAB501).
文摘SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
基金supported by the National Nature Science Foundation of China(No.82002345 to J.D and 81902179 to L.S)the Gusu Talent Program(No.Qngg2022008 and GSWS2021027 to J.D)the Preliminary Research Project of the Second Affiliated Hospital of Soochow University(No.SDFEYBS1905 to J.D).
文摘Increased matrix stiffness of nucleus pulposus(NP)tissue is a main feature of intervertebral disc degeneration(IVDD)and affects various functions of nucleus pulposus cells(NPCs).Glycolysis is the main energy source for NPC survival,but the effects and underlying mechanisms of increased extracellular matrix(ECM)stiffness on NPC glycolysis remain unknown.In this study,hydrogels with different stiffness were established to mimic the mechanical environment of NPCs.Notably,increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis,and NPCs cultured on rigid substrates exhibited a reduction in glycolysis.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030006).
文摘Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.
文摘Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredient.The anti-aging effect of ginsenosides is considered to be one of the important roles of ginsenosides,and Compound K,as the main deglycosylated metabolite of ginsenosides,has a comprehensive anti-aging effect as a highly active ingredient obtained by transformation under the action of microbiota.Recent studies have shown that ginsenosides have anti-photo-oxidation,anti-skin aging,free radical scavenging and immunostimulatory effects,which can effectively prevent skin photoaging.With the progress of modern natural medicine extraction technology and the deepening of the research on the anti-skin aging of ginsenosides'high active ingredients,it will promote the development and application of natural product protective skin photoaging preparations.The rare ginsenoside Compound K plays an important role in the improvement of skin health and anti-aging,which is mainly realized by increasing the activity of antioxidant enzymes,inducing the expression of related genes,reducing the content of oxidative damage substances,regulating the immune system,and influencing the expression of cell-cycle regulators and aging genes.A more comprehensive and in-depth study of the molecular mechanism of the anti-aging effect of rare ginsenoside Compound K will be one of the focuses of future research.
基金supported by the Natural Science Foundation of China(Nos.52175188 and 52274367)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-434)+2 种基金he Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology(No.LKLAMTF202301)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012378)the Science and Technology on Reactor System Design Technology Laboratory.
文摘CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.
基金supported by the Director Fund Project provided by the Institute of Plant Nutrition,Resources and Environment,Beijing Academy of Agriculture and Forestry Sciences(No.YZS202101)the Youth Fund Project provided by Beijing Academy of Agriculture and Forestry Sciences(No.QNJJ202125)China Agriculture Research System of MOF and MARA.
文摘The dissolved organic matter(DOM)with high mobility and reactivity plays a crucial role in soil.In this study,the characteristics and phytotoxicity ofDOMreleased fromthe hydrochars prepared from different feedstocks(cowmanure,corn stalk and Myriophyllum aquaticum)under three hydrothermal carbonization(HTC)temperatures(180,200 and 220°C)were evaluated.The results showed that the hydrochars had high dissolved organic carbon content(20.15 to 37.65 mg/g)and its content showed a gradual reduction as HTC temperature increased.Three fluorescent components including mixed substance of fulvic acid-like and humic acid-like substances(C1,30.92%-58.32%),UVA humic acid-like substance(C2,25.27%-29.94%)and protein-like substance(C3,11.74%-41.92%)were identified in hydrochar DOM by excitation emission matrix spectra coupled with parallel factor analysis.High HTC temperature increased the relative proportion of aromatic substances(C1+C2)and humification degree of hydrochar DOM from cow manure,while it presented adverse effects on the hydrochar DOM from corn stalk and Myriophyllum.aquaticum.The principal component analysis suggested that feedstock type and HTC temperature posed significant effects on the characteristics of hydrochar DOM.Additionally,seed germination test of all hydrochar DOM demonstrated that the root length was reduced by 8.88%-26.43%in contrast with control,and the germination index values were 73.57%-91.12%.These findings provided new insights into the potential environmental effects for hydrochar application in soil.
基金supported by the National Natural Science Foundation of China(grant no.52231004 and 52072305).
文摘Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金supported by the Beijing Natural Science Foundation(5252014)the National Natural Science Foundation of China(62303063)。
文摘Passive acoustic monitoring(PAM)technology is increasingly becoming one of the mainstream methods for bird monitoring.However,detecting bird audio within complex natural acoustic environments using PAM devices remains a significant challenge.To enhance the accuracy(ACC)of bird audio detection(BAD)and reduce both false negatives and false positives,this study proposes a BAD method based on a Dual-Feature Enhancement Fusion Model(DFEFM).This method incorporates per-channel energy normalization(PCEN)to suppress noise in the input audio and utilizes mel-frequency cepstral coefficients(MFCC)and frequency correlation matrices(FCM)as input features.It achieves deep feature-level fusion of MFCC and FCM on the channel dimension through two independent multi-layer convolutional network branches,and further integrates Spatial and Channel Synergistic Attention(SCSA)and Multi-Head Attention(MHA)modules to enhance the fusion effect of the aforementioned two deep features.Experimental results on the DCASE2018 BAD dataset show that our proposed method achieved an ACC of 91.4%and an AUC value of 0.963,with false negative and false positive rates of 11.36%and 7.40%,respectively,surpassing existing methods.The method also demonstrated detection ACC above 92%and AUC values above 0.987 on datasets from three sites of different natural scenes in Beijing.Testing on the NVIDIA Jetson Nano indicated that the method achieved an ACC of 89.48%when processing an average of 10 s of audio,with a response time of only 0.557 s,showing excellent processing efficiency.This study provides an effective method for filtering non-bird vocalization audio in bird vocalization monitoring devices,which helps to save edge storage and information transmission costs,and has significant application value for wild bird monitoring and ecological research.
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金supported by the“National Natural Science Foundation of China”(Grants.52271109 and 52001223)Support from the“National Key Research and Development Program for Young Scientists”(Grant.2021YFB3703300)+1 种基金the Major Special Plan for Science and Technology in Shanxi Province(202201050201012)the Special Fund Project for Guiding Local Science and Technology Development by the Central Government(Grant.YDZJSX2021B019)。
文摘To obtain the Ti_(p)with different aspect ratios,the Ti_(p)/Mg-5Zn-0.3Ca composite prepared by semi-solid stir casting was subjected to extrusion at 220℃,180℃,and 140℃,respectively.Then,the effect of the Ti_(p)’s aspect ratio on the microstructure,mechanical properties,work hardening and softening behaviors of Ti_(p)/Mg-5Zn-0.3Ca composites was investigated.The results indicated that the Ti_(p)could be elongated obviously after low-temperature extrusion,and the aspect ratio of which would reach to 13.7:1 as the extrusion temperature deceased to 140℃.Then the“Ti/Mg”layer-like structure was formed in the Ti_(p)/Mg-5Zn-0.3Ca composite.Accompanied with the elongation of Ti_(p),the dynamic recrystallized grains and dynamic precipitates were both refined significantly,however,the dynamic recrystallization rate changed a little.The elongated Ti_(p)endowed the Ti_(p)/Mg-5Zn-0.3Ca composites with better matching of strength and toughness without the sacrifice of elongation and bending strain.Both the work hardening rate and softening rate of Ti_(p)/Mg-5Zn-0.3Ca composites increased with the increasing aspect ratio of Ti_(p).The formation of“Ti/Mg”layer-like structure contributed to the redistribution of strain from large aggregations to a network-like distribution,which effectively suppresses the initiation and propagation of micro-cracks,thus enhancing the plasticity of the Ti_(p)/Mg-5Zn-0.3Ca composites.
基金supported by the National Natural Science Foundation of China,No.31930068National Key Research and Development Program of China,Nos.2018YFA0107302 and 2021YFA1101203(all to HX).
文摘Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.