We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study ...We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study the distant correlations of the Heisenberg J_(1)-J_(2)model on the square lattice.We find that the intermediate phase(0.43≤sssim J_(2)≤sssim 0.62)is divided into two parts.One part is a near-critical region(0.43≤J_(2)≤0.50).The other part is the plaquette valence bond solid(PVB)state(0.51≤J_(2)≤0.62).The spin correlations decay exponentially as a function of distance in the PVB.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine(DMA), of different sizes were measured with matrix isolation...Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine(DMA), of different sizes were measured with matrix isolation IR(infrared) and NIR(near infrared)spectroscopy. The NIR vibrations are more separated and therefore it is easier to distinguish different sizes of clusters in this region. The DMA clusters, up to DMA tetramer, have been optimized using density functional methods, and the geometries, binding energies and thermodynamic properties of DMA clusters were obtained. The computed frequencies and intensities of NH-stretching vibrations in the DMA clusters were used to interpret the experimental spectra. We have identified the fundamental transitions of the bonded NH-stretching vibration and the first overtone transitions of the bonded and free NH-stretching vibration in the DMA clusters. Based on the changes in vibrational intensities during the annealing processes, the growth of clusters was clearly observed. The results of annealing processes indicate that DMA molecules tend to form larger clusters with lower energies under matrix temperatures, which is also supported by the calculated reaction energies of cluster formation.展开更多
The reinforcement distribution of metal matrix composites (MMCs) plays an important role in low cycle fatigue. Thus, it is essential to study the effect of reinforcement clustering on the crack initiation mechanism of...The reinforcement distribution of metal matrix composites (MMCs) plays an important role in low cycle fatigue. Thus, it is essential to study the effect of reinforcement clustering on the crack initiation mechanism of MMCs. In this study, the effect of reinforcement clustering on the microcrack initiation mechanism in a cast hybrid MMC reinforced with SiC particles and Al2O3 whiskers was investigated experimentally and numerically. Experimental results showed that microcracks always initiated in the particle-matrix interface, located in the cluster of the reinforcements. The interface debonding occurred in the fracture which created additional secondary microcracks due to continued fatigue cycling. The microcrack coalesced with other nearby microcracks caused the final fracture. To validate the experimental results on the microcrack initiation, three dimensional unit cell models using finite element method (FEM) were developed. The stress distribution in both the reinforcement clustering and non-clustering regions was analyzed. The numerical analysis showed that high stresses were developed on the reinforcements located in the clustering region and stress concentration occurred on the particle-matrix interface. The high volume fraction reinforced hybrid clustering region experienced greater stresses than that of the SiC particulate reinforced clustering region and low volume fraction reinforced hybrid clustering region. Besides, the stresses developed on the non-clustering region with particle-whisker series orientation were reasonably higher than that of the non-clustering region with particle-whisker parallel orientation. The high volume fraction reinforced hybrid clustering region is found to be highly vulnerable to initiate crack in cast hybrid MMC during low cycle fatigue.展开更多
The use of online discussion forum can?effectively engage students in their studies. As the number of messages posted on the forum is increasing, it is more difficult for instructors to read and respond to them in a p...The use of online discussion forum can?effectively engage students in their studies. As the number of messages posted on the forum is increasing, it is more difficult for instructors to read and respond to them in a prompt way. In this paper, we apply non-negative matrix factorization and visualization to clustering message data, in order to provide a summary view of messages that disclose their deep semantic relationships. In particular, the NMF is able to find the underlying issues hidden in the messages about which most of the students are concerned. Visualization is employed to estimate the initial number of clusters, showing the relation communities. The experiments and comparison on a real dataset have been reported to demonstrate the effectiveness of the approaches.展开更多
A web page clustering algorithm called PageCluster and the improved algorithm ImPageCluster solving overlapping are proposed. These methods not only take the web structure and page hyperlink into account, but also con...A web page clustering algorithm called PageCluster and the improved algorithm ImPageCluster solving overlapping are proposed. These methods not only take the web structure and page hyperlink into account, but also consider the importance of each page which is described as in-weight and out-weight. Compared with the traditional clustering methods, the experiments show that the runtimes of the proposed algorithms are less with the improved accuracies.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strat...Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strategy is proposed specially to classify more than one task at the same time using the high dimension matrix,aiming to o er a fast multi-tasking solution.The short-time Fourier transform(STFT)is first used to obtain the time-frequency features from the gear vibration signal.Then,the optimal clustering numbers are estimated using the Bayesian information criterion(BIC)theory,which possesses the simultaneous assessment capability,compared with traditional validity indexes.Subsequently,the classical/modified NMF-based co-clustering methods are carried out to obtain the classification results in both row and column tasks.Finally,the parameters involved in BIC and NMF algorithms are determined using the gradient ascent(GA)strategy in order to achieve reliable diagnostic results.The Spectra Quest’s Drivetrain Dynamics Simulator gear data sets were analyzed to verify the e ectiveness of the proposed approach.展开更多
In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect ...In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.展开更多
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen...According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.展开更多
A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the...A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database.展开更多
With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,...With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms.展开更多
This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying th...This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.展开更多
Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an i...Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.展开更多
In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by usi...In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by using theory and in-telligent methods synthetically. The network model for rapidly calculating the theory effective matrix is established by the BP network optimized by the particle swarm algorithm. The network model for rapidly calculating the meas- urement effective matrix is established by the RBF network optimized by the cluster algorithm. The flatness control model can track the practical situation of roiling process by on-line selVlearning. The scheme for flatness control quantity calculation is established by combining the theory control matrix and the measurement control matrix. The simulation result indicates that the establishment of theory-intelligent dynamic matrix model of flatness control with stable control process and high precision supplies a new way and method for studying flatness on-line control model.展开更多
文摘We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study the distant correlations of the Heisenberg J_(1)-J_(2)model on the square lattice.We find that the intermediate phase(0.43≤sssim J_(2)≤sssim 0.62)is divided into two parts.One part is a near-critical region(0.43≤J_(2)≤0.50).The other part is the plaquette valence bond solid(PVB)state(0.51≤J_(2)≤0.62).The spin correlations decay exponentially as a function of distance in the PVB.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
基金supported by the Danish Council for Independent Research-Natural Sciences,the Danish Center for Scientific Computing (DCSC)National Natural Science Foundation of China (Nos.21407095,21577080)Shandong Provincial Natural Science Foundation,China (No.ZR2014BQ013)
文摘Amines have many atmospheric sources and their clusters play an important role in aerosol nucleation processes. Clusters of a typical amine, dimethylamine(DMA), of different sizes were measured with matrix isolation IR(infrared) and NIR(near infrared)spectroscopy. The NIR vibrations are more separated and therefore it is easier to distinguish different sizes of clusters in this region. The DMA clusters, up to DMA tetramer, have been optimized using density functional methods, and the geometries, binding energies and thermodynamic properties of DMA clusters were obtained. The computed frequencies and intensities of NH-stretching vibrations in the DMA clusters were used to interpret the experimental spectra. We have identified the fundamental transitions of the bonded NH-stretching vibration and the first overtone transitions of the bonded and free NH-stretching vibration in the DMA clusters. Based on the changes in vibrational intensities during the annealing processes, the growth of clusters was clearly observed. The results of annealing processes indicate that DMA molecules tend to form larger clusters with lower energies under matrix temperatures, which is also supported by the calculated reaction energies of cluster formation.
文摘The reinforcement distribution of metal matrix composites (MMCs) plays an important role in low cycle fatigue. Thus, it is essential to study the effect of reinforcement clustering on the crack initiation mechanism of MMCs. In this study, the effect of reinforcement clustering on the microcrack initiation mechanism in a cast hybrid MMC reinforced with SiC particles and Al2O3 whiskers was investigated experimentally and numerically. Experimental results showed that microcracks always initiated in the particle-matrix interface, located in the cluster of the reinforcements. The interface debonding occurred in the fracture which created additional secondary microcracks due to continued fatigue cycling. The microcrack coalesced with other nearby microcracks caused the final fracture. To validate the experimental results on the microcrack initiation, three dimensional unit cell models using finite element method (FEM) were developed. The stress distribution in both the reinforcement clustering and non-clustering regions was analyzed. The numerical analysis showed that high stresses were developed on the reinforcements located in the clustering region and stress concentration occurred on the particle-matrix interface. The high volume fraction reinforced hybrid clustering region experienced greater stresses than that of the SiC particulate reinforced clustering region and low volume fraction reinforced hybrid clustering region. Besides, the stresses developed on the non-clustering region with particle-whisker series orientation were reasonably higher than that of the non-clustering region with particle-whisker parallel orientation. The high volume fraction reinforced hybrid clustering region is found to be highly vulnerable to initiate crack in cast hybrid MMC during low cycle fatigue.
文摘The use of online discussion forum can?effectively engage students in their studies. As the number of messages posted on the forum is increasing, it is more difficult for instructors to read and respond to them in a prompt way. In this paper, we apply non-negative matrix factorization and visualization to clustering message data, in order to provide a summary view of messages that disclose their deep semantic relationships. In particular, the NMF is able to find the underlying issues hidden in the messages about which most of the students are concerned. Visualization is employed to estimate the initial number of clusters, showing the relation communities. The experiments and comparison on a real dataset have been reported to demonstrate the effectiveness of the approaches.
基金Sponsored bythe Huo Ying-Dong Education Foundation of China(91101)
文摘A web page clustering algorithm called PageCluster and the improved algorithm ImPageCluster solving overlapping are proposed. These methods not only take the web structure and page hyperlink into account, but also consider the importance of each page which is described as in-weight and out-weight. Compared with the traditional clustering methods, the experiments show that the runtimes of the proposed algorithms are less with the improved accuracies.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金Supported by National Natural Science Foundation of China(Grant No.51575102)Jiangsu Postgraduate Research Innovation Program(Grant No.KYCX18_0075).
文摘Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strategy is proposed specially to classify more than one task at the same time using the high dimension matrix,aiming to o er a fast multi-tasking solution.The short-time Fourier transform(STFT)is first used to obtain the time-frequency features from the gear vibration signal.Then,the optimal clustering numbers are estimated using the Bayesian information criterion(BIC)theory,which possesses the simultaneous assessment capability,compared with traditional validity indexes.Subsequently,the classical/modified NMF-based co-clustering methods are carried out to obtain the classification results in both row and column tasks.Finally,the parameters involved in BIC and NMF algorithms are determined using the gradient ascent(GA)strategy in order to achieve reliable diagnostic results.The Spectra Quest’s Drivetrain Dynamics Simulator gear data sets were analyzed to verify the e ectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (No.40574059)the Ministry of Education (No.NCET-04-0904)
文摘In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.
文摘According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective.
文摘A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122 and 61071105)
文摘With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61074073 and 61034005)the Fundamental Research Funds for the Central Universities of China (Grant No. N110504001)the Open Project of the State Key Laboratory of Management and Control for Complex Systems, China (Grant No. 20110107)
文摘This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.
基金supported by National High Technology Research and Development Program(863Program)(No.2013AA040301-3)National Natural Science Foundation of China(Nos.61473319 and 61104135)+1 种基金the Key Project of National Natural Science Foundation of China(Nos.61621062 and 61134006)the Innovation Research Funds of Central South University(No.2016CX014)
文摘Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.
基金Item Sponsored by National High-Tech Research and Development Project of China(2009AA04Z143)Natural Science Foundation of Hebei Province of China(E2006001038)Hebei Provincial Science and Technology Project of China(10212101D)
文摘In order to increase the precision of flatness control, considering the principle and the measured data of rolling process essence, the theory-intelligent dynamic matrix model of flatness control is established by using theory and in-telligent methods synthetically. The network model for rapidly calculating the theory effective matrix is established by the BP network optimized by the particle swarm algorithm. The network model for rapidly calculating the meas- urement effective matrix is established by the RBF network optimized by the cluster algorithm. The flatness control model can track the practical situation of roiling process by on-line selVlearning. The scheme for flatness control quantity calculation is established by combining the theory control matrix and the measurement control matrix. The simulation result indicates that the establishment of theory-intelligent dynamic matrix model of flatness control with stable control process and high precision supplies a new way and method for studying flatness on-line control model.