期刊文献+
共找到150,239篇文章
< 1 2 250 >
每页显示 20 50 100
基于Matrix Core的高性能多维FFT设计与优化 被引量:1
1
作者 陆璐 祝松祥 +2 位作者 田卿燕 林海山 郭逸劼 《华南理工大学学报(自然科学版)》 北大核心 2025年第3期20-30,共11页
快速傅里叶变换(FFT)算法广泛应用于科学计算等领域。为了充分挖掘图形处理器(GPU)的计算能力并进一步提高FFT的计算效率,该文针对矩阵形式的Stockham FFT,提出了一种基于Matrix Core的高性能多维FFT计算方案。在计算优化方面,该方案利... 快速傅里叶变换(FFT)算法广泛应用于科学计算等领域。为了充分挖掘图形处理器(GPU)的计算能力并进一步提高FFT的计算效率,该文针对矩阵形式的Stockham FFT,提出了一种基于Matrix Core的高性能多维FFT计算方案。在计算优化方面,该方案利用Matrix Core加速FFT计算中的矩阵乘运算,同时通过编译器内部指令完成小粒度的矩阵乘加,使得Matrix Core支持更多尺寸的FFT计算。在内存优化方面,该方案使用2层迭代策略,以充分利用共享内存,减少与全局内存的数据交换;根据Matrix Core的矩阵数据在各个线程寄存器中的分布规律,直接在寄存器上完成FFT计算中大量存在的矩阵逐元素乘操作;通过对共享内存中的数据进行重排来缓解存储体冲突,并采用双缓冲策略缓解访存瓶颈。该文还提出了高效的矩阵转置策略,以加速多维FFT计算。在AMD MI250 GPU平台上将该方案与GPU上主流的高性能FFT计算库rocFFT和VkFFT进行了比较实验,结果表明:该方案在AMD MI250上的1维、2维和3维FFT平均计算效率均优于rocFFT和VkFFT,3维FFT的平均计算效率为rocFFT的1.5倍,为VkFFT的2.0倍,具有较好的性能提升;mcFFT的计算精度与rocFFT和VkFFT保持在相同水平。 展开更多
关键词 图形处理器 matrix Core 快速傅里叶变换 矩阵乘法
在线阅读 下载PDF
基于Matrix Core的小尺寸批量矩阵乘法设计与优化
2
作者 陆璐 赵容 +1 位作者 梁志宏 索思亮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期48-58,共11页
通用矩阵乘法(GEMM)是线性代数中最重要的运算,来自不同科学领域的许多应用程序都将其关键部分转换为使用GEMM的形式。GEMM广泛应用于大模型、机器学习、科学计算和信号处理等领域。特别是半精度的批处理GEMM(即FP16)一直是许多深度学... 通用矩阵乘法(GEMM)是线性代数中最重要的运算,来自不同科学领域的许多应用程序都将其关键部分转换为使用GEMM的形式。GEMM广泛应用于大模型、机器学习、科学计算和信号处理等领域。特别是半精度的批处理GEMM(即FP16)一直是许多深度学习框架的核心操作。目前AMD GPU上半精度批处理GEMM的访存和计算利用率不足,急需优化。为此,该文提出了一种半精度批处理GEMM(HGEMM)的图形处理器(GPU)优化方案。分块策略方面,根据输入矩阵块大小为线程分配相同的访存量和计算量,同时线程计算多个矩阵乘法,以提高计算单元的利用率。访存优化方面,以多读数据为代价,为每个线程分配相同访存量以便于编译器优化,保证访存和计算时间相互掩盖。对于矩阵尺寸小于16的极小尺寸批处理HGEMM,该文利用4×4×4的Matrix Core及其对应的分块方案,在提升访存性能的同时减少Matrix Core计算资源的浪费,并提供是否使用共享内存的选项来达到最高性能。在AMD GPU MI210平台上,将该方案与rocBLAS的2个算子进行性能对比,结果表明:该方案在AMD GPU MI210上的平均性能为rocBLASHGEMMBatched的4.14倍,rocBLASGEMMExBatched的4.96倍;对于极小尺寸批处理HGEMM,平均性能为rocBLASHGEMMBatched的18.60倍,rocBLASGEMMExBatched的14.02倍。 展开更多
关键词 图形处理器 matrix Core 矩阵乘法 访存优化
在线阅读 下载PDF
Embedding Perovskite in Polymer Matrix Achieved Positive Temperature Response with Inversed Temperature Crystallization
3
作者 Meiting Peng Xue Guan +10 位作者 Yingzhu Wu Nan Zhang Qi Feng Liyong Tian Yancheng Wu Yangfan Zhang Feng Gan Fuqin Deng Meilin Huang Guichuan Xing Ningbo Yi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期357-367,共11页
Organic perovskites are promising semiconductor materials for advanced photoelectric applications.Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability.... Organic perovskites are promising semiconductor materials for advanced photoelectric applications.Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability.In this study,a novel perovskite-based composite with positive sensitivity to temperature was designed and obtained based on its inverse temperature crystallization,demonstrating good flexibility and solution processability.The supercritical drying method was used to address the limitations of annealing drying in preparing high-performance perovskite.Optimizing the precursor composition proved to be an effective approach for achieving high fluorescence and structural integrity in the perovskite material.This perovskite-based composite exhibited a positive temperature sensitivity of 28.563%℃^(-1)for intensity change and excellent temperature cycling reversibility in the range of 25-40℃in an ambient environment.This made it suitable for use as a smart window with rapid response.Furthermore,the perovskite composite was found to offer temperature-sensing photoluminescence and flexible processability due to its components of perovskite-based compounds and polyethylene oxide.The organic precursor solvent could be a promising candidate for use as ink to print or write on various substrates for optoelectronic devices responding to temperature. 展开更多
关键词 FLEXIBILITY inversed temperature crystallization PEROVSKITE positive temperature response
在线阅读 下载PDF
Immunohistochemical expression of matrix metalloproteinase-9 and 13 in oral squamous cell carcinoma and their role in predicting lymph node metastasis 被引量:1
4
作者 Bhari Sharanesha Manjunatha Keshav T Handge +2 位作者 Vandana Sandeep Shah Yasser Eid Al-Thobaiti Deepak Gowda Sadashivappa Pateel 《World Journal of Methodology》 2025年第2期108-116,共9页
BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors... BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors is their penetration of neighboring tissues,such as lymphatic and blood arteries,due to the tumor cells'capacity to break down the extracellular matrix(ECM).Matrix metalloproteinases(MMPs)constitute a family of proteolytic enzymes that facilitate tissue remodeling and the degradation of the ECM.MMP-9 and MMP-13 belong to the group of extracellular matrix degrading enzymes and their expression has been studied in OSCC because of their specific functions.MMP-13,a collagenase family member,is thought to play an essential role in the MMP activation cascade by breaking down the fibrillar collagens,whereas MMP-9 is thought to accelerate the growth of tumors.Elevated MMP-13 expression has been associated with tumor behavior and patient prognosis in a number of malignant cases.AIM To assess the immunohistochemical expression of MMP-9 and MMP-13 in OSCC.METHODS A total of 40 cases with histologically confirmed OSCC by incisional biopsy were included in this cross-sectional retrospective study.The protocols for both MMP-9 and MMP-13 immunohistochemical staining were performed according to the manufacturer’s recommendations along with the normal gingival epithelium as a positive control.All the observations were recorded and Pearson’sχ²test with Fisher exact test was used for statistical analysis.RESULTS Our study showed no significant correlation between MMP-9 and MMP-13 staining intensity and tumor size.The majority of the patients were in advanced TNM stages(III and IV),and showed intense expression of MMP-9 and MMP-13.CONCLUSION The present study suggests that both MMP-9 and MMP-13 play an important and independent role in OSCC progression and invasiveness.Intense expression of MMP-9 and MMP-13,irrespective of histological grade of OSCC,correlates well with TNM stage.Consequently,it is evident that MMP-9 and MMP-13 are important for the invasiveness and progression of tumors.The findings may facilitate the development of new approaches for evaluating lymph node metastases and interventional therapy techniques,hence enhancing the prognosis of patients diagnosed with OSCC. 展开更多
关键词 matrix metalloproteinases Oral squamous cell carcinoma Tumor staging IMMUNOHISTOCHEMISTRY INVASION Lymph node metastasis TNM stage
暂未订购
Neurocircuit regeneration by extracellular matrix reprogramming
5
作者 Shengzhang Su Ian N.Levasseur Kimberly M.Alonge 《Neural Regeneration Research》 SCIE CAS 2025年第8期2300-2301,共2页
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio... The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases. 展开更多
关键词 matrix PROGRAMMING
在线阅读 下载PDF
Matrix stiffness regulates nucleus pulposus cell glycolysis by MRTF-A-dependent mechanotransduction 被引量:1
6
作者 Haoran Xu Kang Wei +10 位作者 Jinhao Ni Xiaofeng Deng Yuexing Wang Taiyang Xiang Fanglong Song Qianliang Wang Yanping Niu Fengxian Jiang Jun Wang Lei Sheng Jun Dai 《Bone Research》 2025年第2期476-489,共14页
Increased matrix stiffness of nucleus pulposus(NP)tissue is a main feature of intervertebral disc degeneration(IVDD)and affects various functions of nucleus pulposus cells(NPCs).Glycolysis is the main energy source fo... Increased matrix stiffness of nucleus pulposus(NP)tissue is a main feature of intervertebral disc degeneration(IVDD)and affects various functions of nucleus pulposus cells(NPCs).Glycolysis is the main energy source for NPC survival,but the effects and underlying mechanisms of increased extracellular matrix(ECM)stiffness on NPC glycolysis remain unknown.In this study,hydrogels with different stiffness were established to mimic the mechanical environment of NPCs.Notably,increased matrix stiffness in degenerated NP tissues from IVDD patients was accompanied with impaired glycolysis,and NPCs cultured on rigid substrates exhibited a reduction in glycolysis. 展开更多
关键词 MECHANOTRANSDUCTION nucleus pulposus cells npcs glycolysis increased matrix stiffness nucleus pulposus np tissue nucleus pulposus cells matrix stiffness intervertebral disc degeneration ivdd GLYCOLYSIS
暂未订购
Charge carrier management via semiconducting matrix for efficient self-powered quantum dot infrared photodetectors 被引量:1
7
作者 Jianfeng Ding Xinying Liu +3 位作者 Yueyue Gao Chen Dong Gentian Yue Furui Tan 《Journal of Semiconductors》 2025年第3期74-81,共8页
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po... Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices. 展开更多
关键词 quantum dot semiconducting matrix ligand exchange self-powered photodetectors
在线阅读 下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
8
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth BIOMATERIALS extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
暂未订购
THE SPECTRAL RADIUS OF UNIFORM HYPERGRAPH DETERMINED BY THE SIGNLESS LAPLACIAN MATRIX
9
作者 HE Fang-guo 《数学杂志》 2025年第1期1-12,共12页
This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh ... This paper studies the problem of the spectral radius of the uniform hypergraph determined by the signless Laplacian matrix.The upper bound of the spectral radius of a uniform hypergraph is obtained by using Rayleigh principle and the perturbation of the spectral radius under moving the edge operation,and the extremal hypergraphs are characterized for both supertree and unicyclic hypergraphs.The spectral radius of the graph is generalized. 展开更多
关键词 spectral radius uniform hypergraph Signless Laplasian matrix
在线阅读 下载PDF
Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation
10
作者 Muning Chen Jiemei Zhou +7 位作者 Jing Ma Weigang Zheng Guanying Dong Xin Li Zhihong Tian Yatao Zhang Jing Wang Yong Wang 《Green Energy & Environment》 SCIE EI CAS 2025年第1期203-213,共11页
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim... Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials. 展开更多
关键词 Mixed matrix membranes Polymers of intrinsic microporosity CO_(2)separation Porous carbon materials
在线阅读 下载PDF
A propane‑selective metal‑organic framework for inverse selective adsorption propane/propylene separation
11
作者 YANG Shanqing WANG Lulu +3 位作者 ZHANG Qiang LI Jiajia LI Yilong HU Tongliang 《无机化学学报》 北大核心 2025年第10期2138-2148,共11页
We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of ... We report a robust pillar-layered metal-organic framework,Zn‑tfbdc‑dabco(tfbdc:tetrafluoroterephthal-ate,dabco:1,4-diazabicyclo[2.2.2]octane),featuring the fluorinated pore environment,for the preferential binding of propane over propylene and thus highly inverse selective separation of propane/propylene mixture.The inverse propane-selective performance of Zn‑tfbdc‑dabco for the propane/propylene separation was validated by single-component gas adsorption isotherms,isosteric enthalpy of adsorption calculations,ideal adsorbed solution theory calculations,along with the breakthrough experiment.The customized fluorinated networks served as a propane-trap to form more interactions with the exposed hydrogen atoms of propane,as unveiled by the simulation studies at the molecular level.With the advantage of inverse propane-selective adsorption behavior,high adsorption capacity,good cycling stability,and low isosteric enthalpy of adsorption,Zn‑tfbdc‑dabco can be a promising candidate adsorbent for the challenging propane/propylene separation to realize one-step purification of the target propylene substance. 展开更多
关键词 metal-organic framework propane/propylene separation inverse selective adsorption separation
在线阅读 下载PDF
A splicing algorithm for best subset selection in sliced inverse regression
12
作者 Borui Tang Jin Zhu +1 位作者 Tingyin Wang Junxian Zhu 《中国科学技术大学学报》 北大核心 2025年第5期22-34,21,I0001,共15页
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re... In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors. 展开更多
关键词 splicing technique best subset selection sliced inverse regression nonconvex optimization sparsity constraint optimal conditions
在线阅读 下载PDF
Symmetric Periodic Solution of Linear Periodic Matrix Equations via BCR Algorithm
13
作者 MA Changfeng XIE Yajun 《数学进展》 北大核心 2025年第4期881-890,共10页
Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently so... Analysis and design of linear periodic control systems are closely related to the periodic matrix equations.The biconjugate residual method(BCR for short)have been introduced by Vespucci and Broyden for efficiently solving linear systems Aα=b.The objective of this paper is to provide one new iterative algorithm based on BCR method to find the symmetric periodic solutions of linear periodic matrix equations.This kind of periodic matrix equations has not been dealt with yet.This iterative method is guaranteed to converge in a finite number of steps in the absence of round-off errors.Some numerical results are performed to illustrate the efficiency and feasibility of new method. 展开更多
关键词 periodic matrix equation biconjugate residual method symmetric periodic solution convergence analysis
原文传递
Real-Time Error Analysis of Multi-Channel Capacitive Voltage Transformer Using Co-Prediction Matrix
14
作者 Jiusong Hu Ao Xiong +2 位作者 Yongqi Liu Guaxuan Xiao Yi Zhong 《Journal of Power and Energy Engineering》 2025年第1期1-17,共17页
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage... Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations. 展开更多
关键词 Capacitive Voltage Transformers Co-Prediction matrix HIGH-VOLTAGE Measurement error
在线阅读 下载PDF
The application of multi-scale magnetic matrix materials in high-gradient magnetic separation:From micro-and nano-to millimeter-scale
15
作者 WANG Dong KU Jian-gang +3 位作者 LEI Zhong-yun LI Xin YAN Ju-jian WANG Qian 《Journal of Central South University》 2025年第4期1299-1326,共28页
Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter... Micro-and nano-to millimeter-scale magnetic matrix materials have gained widespread application due to their exceptional magnetic properties and favorable cost-effectiveness.With the rapid progress in condensed matter physics,materials science,and mineral separation technologies,these materials are now poised for new opportunities in theoretical research and development.This review provides a comprehensive analysis of these matrices,encompassing their structure,size,shape,composition,properties,and multifaceted applications.These materials,primarily composed of alloys of transition state metasl such as iron(Fe),cobalt(Co),titanium(Ti),and nickel(Ni),exhibit unique attributes like high magnetization rates,low eleastic modulus,and high saturation magnetic field strengths.Furthermore,the studies also delve into the complex mechanical interactions involved in the separation of magnetic particles using magnetic separator matrices,including magnetic,gravitational,centrifugal,and van der Waals forces.The review outlines how size and shape effects influence the magnetic behavior of matrices,offering new perspectives for innovative applications of magnetic matrices in various domains of materials science and magnetic separation. 展开更多
关键词 magnetic matrix materials magnetic separation micro-and nano-magnetic matrix millimeter magnetic matrix
在线阅读 下载PDF
AI-Driven Inverse Design of Materials:Past,Present,and Future
16
作者 Xiao-Qi Han Xin-De Wang +5 位作者 Meng-Yuan Xu Zhen Feng Bo-Wen Yao Peng-Jie Guo Ze-Feng Gao Zhong-Yi Lu 《Chinese Physics Letters》 2025年第2期135-174,共40页
The discovery of advanced materials is a cornerstone of human technological development and progress.The structures of materials and their corresponding properties are essentially the result of a complex interplay of ... The discovery of advanced materials is a cornerstone of human technological development and progress.The structures of materials and their corresponding properties are essentially the result of a complex interplay of multiple degrees of freedom such as lattice,charge,spin,symmetry,and topology.This poses significant challenges for the inverse design methods of materials.Humans have long explored new materials through numerous experiments and proposed corresponding theoretical systems to predict new material properties and structures.With the improvement of computational power,researchers have gradually developed various electronic-structure calculation methods,such as the density functional theory and high-throughput computational methods.Recently,the rapid development of artificial intelligence(AI)technology in computer science has enabled the effective characterization of the implicit association between material properties and structures,thus forming an efficient paradigm for the inverse design of functional materials.Significant progress has been achieved in the inverse design of materials based on generative and discriminative models,attracting widespread interest from researchers.Considering this rapid technological progress,in this survey,we examine the latest advancements in AI-driven inverse design of materials by introducing the background,key findings,and mainstream technological development routes.In addition,we summarize the remaining challenges for future directions.This survey provides the latest overview of AI-driven inverse design of materials,which can serve as a useful resource for researchers. 展开更多
关键词 MATERIALS inverse CORNERS
原文传递
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
17
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
暂未订购
Extracellular matrix gene set and microRNA network in intestinal ischemia-reperfusion injury:Insights from RNA sequencing for diagnosis and therapy
18
作者 Dao-Jian Xu Guo-Tao Wang Qiang Zhong 《World Journal of Gastrointestinal Surgery》 2025年第2期25-36,共12页
Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(EC... Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients. 展开更多
关键词 Diagnostic biomarkers Extracellular matrix Gene expression Intestinal ischemia-reperfusion injury matrix metalloproteinases MICRORNA Treatment strategies
暂未订购
Matrix metalloproteinases and their tissue inhibitors as indicators of aortic aneurysm and dissection development in extracellular matrix remodeling
19
作者 Marc Irqsusi Fiona R Rodepeter +2 位作者 Madeline Günther Andreas Kirschbaum Sebastian Vogt 《World Journal of Experimental Medicine》 2025年第2期1-11,共11页
Aneurysms and dissections represent some of the most serious cardiovascular diseases.The prevailing theory posits that mechanical overloading of the vessel wall is the underlying cause.Inspired by Barkhordarian et al,... Aneurysms and dissections represent some of the most serious cardiovascular diseases.The prevailing theory posits that mechanical overloading of the vessel wall is the underlying cause.Inspired by Barkhordarian et al,the authors present matrix metalloproteinases(MMPs)and their inhibitors in immunohistological analyses as contributing factors in the pathophysiology of aortic aneurysms(AA).Data analysis of MMP-1,MMP-9,tissue inhibitors of metalloproteinases(TIMPs),including TIMP-1 and TIMP-2 expression reveals a varied distribution between the adventitia and media and a non-uniform expression of the investigated markers.These elements,as key components of the extracellular matrix(ECM),indicate that the formation of AA is not solely driven by endoluminal pressure loading of the aortic wall.Instead,degenerative processes within ECM elements contribute significantly.Importantly,AA do not necessarily imply dissection.Tissue destruction,allowing blood flow entry,arises from reduced oxygen supply to the media,primarily due to incomplete capillarization or neocapillarization. 展开更多
关键词 matrix metalloproteinases Tissue inhibitor of metalloproteinases Acute aortic dissection Aortic aneurysm Extracellular matrix remodeling PATHOGENESIS
暂未订购
Inverse design of broadband and dispersion-flattened highly GeO2-doped optical fibers based on neural networks and particle swarm algorithm
20
作者 LI Runrui WANG Chuncan 《Optoelectronics Letters》 2025年第6期328-335,共8页
Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN mo... Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively. 展开更多
关键词 neural network predict optical fiber dispersion inverse design neural network nn dispersion flattening inverse desig BROADBAND particle swarm optimization pso
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部