The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzz...The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzzy relation is decomposed into two parts as principal sub-matrices and secondary sub-matrices; an r-ary symmetrical-valued type-2 fuzzy relation model and its corresponding symmetrical-valued type-2 fuzzy relation equation model are established. Then, two algorithms are developed for solving type-2 fuzzy relation equations, one of which gives a theoretical description for general type-2 fuzzy relation equations; the other one can find all the solutions to the symmetrical-valued ones. The results can improve designing type-2 fuzzy controllers, because it provides knowledge to search the optimal solutions or to find the reason if there is no solution. Finally some numerical examples verify the correctness of the results/algorithms.展开更多
In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amaz...In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.展开更多
In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, wh...In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, which consists of three ingredients: network graph, fundamental network game, and strategy updating rule. Three kinds of network graphs are considered, which are i) undirected graph for symmetric games; ii) directed graph for asymmetric games, and iii) d-directed graph for symmetric games with partial neighborhood information. Three kinds of fundamental evolutionary games (FEGs) are discussed, which are i) two strategies and symmetric (S-2); ii) two strategies and asymmetric (A-2); and iii) three strategies and symmetric (S-3). Three strategy updating rules (SUR) are introduced, which are i) Unconditional Imitation (UI); ii) Fermi Rule(FR); iii) Myopic Best Response Adjustment Rule (MBRA). First, we review the fundamental evolutionary equation (FEE) and use it to construct network profile dynamics (NPD)of NEGs. To show how the dynamics of an NEG can be modeled as a discrete time dynamics within an algebraic state space, the fundamental evolutionary equation (FEE) of each player is discussed. Using FEEs, the network strategy profile dynamics (NSPD) is built by providing efficient algorithms. Finally, we consider three more complicated NEGs: i) NEG with different length historical information, ii) NEG with multi-species, and iii) NEG with time-varying payoffs. In all the cases, formulas are provided to construct the corresponding NSPDs. Using these NSPDs, certain properties are explored. Examples are presented to demonstrate the model constructing method, analysis and control design technique, and to reveal certain dynamic behaviors of NEGs.展开更多
基金This work was partially supported by the Natural Science Foundation of China (No. 611 74094) the Tianjin Natural Science Foundation of China (No. 13JCYBJC1 7400) the Program for New Century Excellent Talents in University of China (No. NCET-10-0506).
文摘The problem of solving type-2 fuzzy relation equations is investigated. In order to apply semi-tensor product of matrices, a new matrix analysis method and tool, to solve type-2 fuzzy relation equations, a type-2 fuzzy relation is decomposed into two parts as principal sub-matrices and secondary sub-matrices; an r-ary symmetrical-valued type-2 fuzzy relation model and its corresponding symmetrical-valued type-2 fuzzy relation equation model are established. Then, two algorithms are developed for solving type-2 fuzzy relation equations, one of which gives a theoretical description for general type-2 fuzzy relation equations; the other one can find all the solutions to the symmetrical-valued ones. The results can improve designing type-2 fuzzy controllers, because it provides knowledge to search the optimal solutions or to find the reason if there is no solution. Finally some numerical examples verify the correctness of the results/algorithms.
文摘In this paper, we consider the Post Einstein Planetary equation of motion. We succeeded in offering a solution using second approximation method, in which we obtained eight exact mathematical solutions that rebel amazing theoretical results. To the order of C<sup>-2</sup>, two of these exact solutions are reduced to the approximate solutions from the method of successive approximations.
基金This work was partially supported by National Natural Science Foundation of China (Nos. 61273013, 61333001, 61104065, 61322307).
文摘In this paper a comprehensive introduction for modeling and control of networked evolutionary games (NEGs) via semi-tensor product (STP) approach is presented. First, we review the mathematical model of an NEG, which consists of three ingredients: network graph, fundamental network game, and strategy updating rule. Three kinds of network graphs are considered, which are i) undirected graph for symmetric games; ii) directed graph for asymmetric games, and iii) d-directed graph for symmetric games with partial neighborhood information. Three kinds of fundamental evolutionary games (FEGs) are discussed, which are i) two strategies and symmetric (S-2); ii) two strategies and asymmetric (A-2); and iii) three strategies and symmetric (S-3). Three strategy updating rules (SUR) are introduced, which are i) Unconditional Imitation (UI); ii) Fermi Rule(FR); iii) Myopic Best Response Adjustment Rule (MBRA). First, we review the fundamental evolutionary equation (FEE) and use it to construct network profile dynamics (NPD)of NEGs. To show how the dynamics of an NEG can be modeled as a discrete time dynamics within an algebraic state space, the fundamental evolutionary equation (FEE) of each player is discussed. Using FEEs, the network strategy profile dynamics (NSPD) is built by providing efficient algorithms. Finally, we consider three more complicated NEGs: i) NEG with different length historical information, ii) NEG with multi-species, and iii) NEG with time-varying payoffs. In all the cases, formulas are provided to construct the corresponding NSPDs. Using these NSPDs, certain properties are explored. Examples are presented to demonstrate the model constructing method, analysis and control design technique, and to reveal certain dynamic behaviors of NEGs.
基金supported by the National Natural Science Foundation of China(Nos.G61074068,G61034007,G61174036,G61374065)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Scholarship Award for Excellent Doctoral Student granted by Ministry of Education