This paper surveys the literature for the optimization problems in both discrete and continuous time models in macroeconomics,and provides an overview over some related computational methods to solve the models linear...This paper surveys the literature for the optimization problems in both discrete and continuous time models in macroeconomics,and provides an overview over some related computational methods to solve the models linearly and nonlinearly,and to compute the transition dynamics and the impulse response functions.Also,the introduction of the financial sectors,the continuous time analysis,and the advanced mathematical tools into the general equilibrium framework expands greatly the scope of the interdisciplinary research to mathematics,statistics and econometrics,and creates further space for exploration and collaboration.Finally,some future research issues related to this topic are highlighted.展开更多
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ...In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.展开更多
The steelmaking process scheduling problem by considering variable electricity price (SMSPVEP) was in- vestigated. A decomposition approach was proposed for the SMSPVEP. At the first stage, mathematical program-ming...The steelmaking process scheduling problem by considering variable electricity price (SMSPVEP) was in- vestigated. A decomposition approach was proposed for the SMSPVEP. At the first stage, mathematical program-ming was utilized to minimize the maximum completion time for each cast without considering variable electricity price. At the second stage, based on obtained relative schedules of all casts, a mathematical model was formulated with an objective of minimizing the energy cost for all casts scheduling problem. The two-stage models were tested on randomly generated instances based on the practical process in a Chinese steelmaking plant. Computational results demonstrate the effectiveness of the proposed approach.展开更多
In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex n...In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.展开更多
Bilinear theological lubrication mechanics provides an important basis for the designs of re- cently developed electrorheological(ER)'smart'journal bearings and those lubricated by mixed fluid-solid lubri- can...Bilinear theological lubrication mechanics provides an important basis for the designs of re- cently developed electrorheological(ER)'smart'journal bearings and those lubricated by mixed fluid-solid lubri- cants.But there is not yet a reliable and efficient numerical method for such a problem of non-Newtonian flu- id mechanics.In the present paper,a finite element method(FEM)together with mat hematical programming solution is successfully used to solve such a problem.A reliable and generalized numerical method for the designs of electrorheological 'smart' journal bearings and the bearings lubricated by mixed fluid- solid lubri- cant is presented.展开更多
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off...This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.展开更多
In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of tr...In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of truth membership,non-determination and falsehood are considered.Neutrosophic programming method in this paper simultaneously seeks to optimize the total costs of the supply chain network,the amount of greenhouse gas emissions,the number of potential people hired and the time of product transfer along the supply chain network.To achieve the stated objective functions,strategic decisions such as locating potential facilities and tactical decisions such as optimal product flow allocation and vehicle routing must be made.The results of the implementation of neutrosophic programming method show the high efficiency of this method in achieving the optimal values of each objective function.Also,by examining the rate of uncertainty,it was observed that with increasing this rate,the total costs of supply chain network design,greenhouse gas emissions and product transfer times have increased,and in contrast,the potential employment rate of individuals has decreased.展开更多
To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are show...To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.展开更多
By expanding the yielding function according toTaylor series and neglecting the high order terms, the elastoplastic constitutive equation is written in a linear complementary form. Based on this linear complementary f...By expanding the yielding function according toTaylor series and neglecting the high order terms, the elastoplastic constitutive equation is written in a linear complementary form. Based on this linear complementary form and the principle of virtual work, a finite element-complementary method is derived for elastoplastic problem. This method is available for materials which satisfy either associated or nonassociated flow rule. In addition, the existence and uniqueness oj solution for the method are also discussed and some useful conclusions are given.展开更多
This paper deals with the limit analyses of perfect rigid-plastic continua.Based on the kinematic theorem of the limit analysis theory,a mathematical programming finite element formula for determining the upper bound ...This paper deals with the limit analyses of perfect rigid-plastic continua.Based on the kinematic theorem of the limit analysis theory,a mathematical programming finite element formula for determining the upper bound load multiplier has been established,and an iteration algorithm proposed accordingly.In this algorithm the plastic and rigid zones are distinguished for every iteration step,and the goal function is modified gradually.The difficulties caused by the nonsmoothness of the goal function are over- come.Some examples solved by this algorithm are presented.展开更多
A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transfor...A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.展开更多
A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with resp...A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function, constraint functions and their First-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted.展开更多
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea...Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.展开更多
In addition to the conventional methods of the calibration model construction, such as PCR (principal components regression) and PLS (partial least-squares), a MPM (mathematical programming method) is developed ...In addition to the conventional methods of the calibration model construction, such as PCR (principal components regression) and PLS (partial least-squares), a MPM (mathematical programming method) is developed and proposed for practical use in NIR analyses of agricultural and food products. The proposed method involves the mathematical programming techniques to seek the regression coefficients for the calibration model calculation. It is based on the optimization theory used for finding the extremum of the objective function in the given domain of a vector space and employs the method of the complementarity problems solving. The MPM algorithm is described in detail. The MPM was tested on an InfraLUM FT-10 NIR analyzer of Lumex company with samples of dry milk (for fat), corn (for protein) and rye flour (for moisture). The obtained results show that the MPM can be used for constructing multivariate calibrations with the qualitative characteristics superior over those of the classical PCR and PLS methods of analysis.展开更多
The study deals with the multi-choice mathematical programming problem, where the right hand side of the constraints is multi-choice in nature. However, the problem of multi-choice linear programming cannot be solved ...The study deals with the multi-choice mathematical programming problem, where the right hand side of the constraints is multi-choice in nature. However, the problem of multi-choice linear programming cannot be solved directly by standard linear or nonlinear programming techniques. The aim of this paper is to transform such problems to a standard mathematical linear programming problem. For each constraint, exactly one parameter value is selected out of a multiple number of parameter values. This process of selection can be established in different ways. In this paper, we present a new simple technique enabling us to handle such problem as a mixed integer linear programming problem and consequently solve them by using standard linear programming software. Our main aim depends on inserting a specific number of binary variables and using them to construct a linear combination which gives just one parameter among the multiple choice values for each choice of the values of the binary variables. A numerical example is presented to illustrate our analysis.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is signifi...The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.展开更多
The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-com...The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.展开更多
In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discus...In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.展开更多
In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with...In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with the complementary slackness constraint condition.Then,we get the penalized problem of the normal nonlinear programming problem by appending the complementary slackness condition to the upper level objective with a penalty.We prove that this penalty function is exact and the penalized problem and the nonlinear bilevel programming problem have the same global optimal solution set.Finally,we propose an algorithm for the nonlinear bilevel programming problem.The numerical results show that the algorithm is feasible and efficient.展开更多
基金Supported by the National Natural Science Foundation of China(72033008,72133002)。
文摘This paper surveys the literature for the optimization problems in both discrete and continuous time models in macroeconomics,and provides an overview over some related computational methods to solve the models linearly and nonlinearly,and to compute the transition dynamics and the impulse response functions.Also,the introduction of the financial sectors,the continuous time analysis,and the advanced mathematical tools into the general equilibrium framework expands greatly the scope of the interdisciplinary research to mathematics,statistics and econometrics,and creates further space for exploration and collaboration.Finally,some future research issues related to this topic are highlighted.
基金Supported by the National 973 Program of China (No. G2000263).
文摘In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.
基金Item Sponsored by National Natural Science Foundation of China (71171038,71021061 )Fundamental Research Funds for Central Universities of China (N100504001)
文摘The steelmaking process scheduling problem by considering variable electricity price (SMSPVEP) was in- vestigated. A decomposition approach was proposed for the SMSPVEP. At the first stage, mathematical program-ming was utilized to minimize the maximum completion time for each cast without considering variable electricity price. At the second stage, based on obtained relative schedules of all casts, a mathematical model was formulated with an objective of minimizing the energy cost for all casts scheduling problem. The two-stage models were tested on randomly generated instances based on the practical process in a Chinese steelmaking plant. Computational results demonstrate the effectiveness of the proposed approach.
文摘In this paper, on the basis of the logarithmic barrier function and KKT conditions, we propose a combined homotopy infeasible interior-point method (CHIIP) for convex nonlinear programming problems. For any convex nonlinear programming, without strict convexity for the logarithmic barrier function, we get different solutions of the convex programming in different cases by CHIIP method.
文摘Bilinear theological lubrication mechanics provides an important basis for the designs of re- cently developed electrorheological(ER)'smart'journal bearings and those lubricated by mixed fluid-solid lubri- cants.But there is not yet a reliable and efficient numerical method for such a problem of non-Newtonian flu- id mechanics.In the present paper,a finite element method(FEM)together with mat hematical programming solution is successfully used to solve such a problem.A reliable and generalized numerical method for the designs of electrorheological 'smart' journal bearings and the bearings lubricated by mixed fluid- solid lubri- cant is presented.
基金Project supported by the National Natutal Science Foundation of China
文摘This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.
文摘In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of truth membership,non-determination and falsehood are considered.Neutrosophic programming method in this paper simultaneously seeks to optimize the total costs of the supply chain network,the amount of greenhouse gas emissions,the number of potential people hired and the time of product transfer along the supply chain network.To achieve the stated objective functions,strategic decisions such as locating potential facilities and tactical decisions such as optimal product flow allocation and vehicle routing must be made.The results of the implementation of neutrosophic programming method show the high efficiency of this method in achieving the optimal values of each objective function.Also,by examining the rate of uncertainty,it was observed that with increasing this rate,the total costs of supply chain network design,greenhouse gas emissions and product transfer times have increased,and in contrast,the potential employment rate of individuals has decreased.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11572025,11202013 and 51420105008
文摘To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
文摘By expanding the yielding function according toTaylor series and neglecting the high order terms, the elastoplastic constitutive equation is written in a linear complementary form. Based on this linear complementary form and the principle of virtual work, a finite element-complementary method is derived for elastoplastic problem. This method is available for materials which satisfy either associated or nonassociated flow rule. In addition, the existence and uniqueness oj solution for the method are also discussed and some useful conclusions are given.
基金The project supported by National Natural Science Foundation of China.
文摘This paper deals with the limit analyses of perfect rigid-plastic continua.Based on the kinematic theorem of the limit analysis theory,a mathematical programming finite element formula for determining the upper bound load multiplier has been established,and an iteration algorithm proposed accordingly.In this algorithm the plastic and rigid zones are distinguished for every iteration step,and the goal function is modified gradually.The difficulties caused by the nonsmoothness of the goal function are over- come.Some examples solved by this algorithm are presented.
基金Sponsored by the National Natural Science Foundation of China(70471063,70771010)
文摘A fuzzy bi-matrix game(FBG),namely a two-person non-zero-sum game with fuzzy strategies and fuzzy payoffs is proposed.We have defined and analyzed the optimal strategies of this FBG,and shown that it can be transformed into a corresponding fuzzy mathematical programming issue,for which a ranking function approach can be applied.In addition,optimal strategies of FBG for both Player I and Player II can be gotten.
文摘A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function, constraint functions and their First-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted.
基金The financial support provided by the Project of National Natural Science Foundation of China(U22A20415,21978256,22308314)“Pioneer”and“Leading Goose”Research&Development Program of Zhejiang(2022C01SA442617)。
文摘Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.
文摘In addition to the conventional methods of the calibration model construction, such as PCR (principal components regression) and PLS (partial least-squares), a MPM (mathematical programming method) is developed and proposed for practical use in NIR analyses of agricultural and food products. The proposed method involves the mathematical programming techniques to seek the regression coefficients for the calibration model calculation. It is based on the optimization theory used for finding the extremum of the objective function in the given domain of a vector space and employs the method of the complementarity problems solving. The MPM algorithm is described in detail. The MPM was tested on an InfraLUM FT-10 NIR analyzer of Lumex company with samples of dry milk (for fat), corn (for protein) and rye flour (for moisture). The obtained results show that the MPM can be used for constructing multivariate calibrations with the qualitative characteristics superior over those of the classical PCR and PLS methods of analysis.
文摘The study deals with the multi-choice mathematical programming problem, where the right hand side of the constraints is multi-choice in nature. However, the problem of multi-choice linear programming cannot be solved directly by standard linear or nonlinear programming techniques. The aim of this paper is to transform such problems to a standard mathematical linear programming problem. For each constraint, exactly one parameter value is selected out of a multiple number of parameter values. This process of selection can be established in different ways. In this paper, we present a new simple technique enabling us to handle such problem as a mixed integer linear programming problem and consequently solve them by using standard linear programming software. Our main aim depends on inserting a specific number of binary variables and using them to construct a linear combination which gives just one parameter among the multiple choice values for each choice of the values of the binary variables. A numerical example is presented to illustrate our analysis.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金supported by the National Science Foundation of China (70771080)Social Science Foundation of Ministry of Education (10YJC630233)
文摘The penalty function method, presented many years ago, is an important nu- merical method for the mathematical programming problems. In this article, we propose a dual-relax penalty function approach, which is significantly different from penalty func- tion approach existing for solving the bilevel programming, to solve the nonlinear bilevel programming with linear lower level problem. Our algorithm will redound to the error analysis for computing an approximate solution to the bilevel programming. The error estimate is obtained among the optimal objective function value of the dual-relax penalty problem and of the original bilevel programming problem. An example is illustrated to show the feasibility of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62103408)Beijing Nova Program (Grant No. 20240484516)the Fundamental Research Funds for the Central Universities (Grant No. KG16314701)。
文摘The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.
文摘In this paper, a class of augmented Lagrangiaus of Di Pillo and Grippo (DGALs) was considered, for solving equality-constrained problems via unconstrained minimization techniques. The relationship was further discussed between the uneonstrained minimizers of DGALs on the product space of problem variables and multipliers, and the solutions of the eonstrained problem and the corresponding values of the Lagrange multipliers. The resulting properties indicate more precisely that this class of DGALs is exact multiplier penalty functions. Therefore, a solution of the equslity-constralned problem and the corresponding values of the Lagrange multipliers can be found by performing a single unconstrained minimization of a DGAL on the product space of problem variables and multipliers.
基金Supported by the Key Project on Science and Technology of Hubei Provincial Department of Education (D20103001)
文摘In this paper,following the method of replacing the lower level problem with its Kuhn-Tucker optimality condition,we transform the nonlinear bilevel programming problem into a normal nonlinear programming problem with the complementary slackness constraint condition.Then,we get the penalized problem of the normal nonlinear programming problem by appending the complementary slackness condition to the upper level objective with a penalty.We prove that this penalty function is exact and the penalized problem and the nonlinear bilevel programming problem have the same global optimal solution set.Finally,we propose an algorithm for the nonlinear bilevel programming problem.The numerical results show that the algorithm is feasible and efficient.