The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional ela...The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional elastic-based models for computing Wdunsuitable.Inspired by critical state soil mechanics,this study theoretically established a new calculation model of Wdsuitable for the coal with nonlinear deformation characteristics.In the new model,the relationship between energy and stress no longer follows the square law(observed in traditional linear elastic models)but exhibits a power function,with the theoretical value of the power exponent ranging between 1 and 2.Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples.The results indicated that the relationship between Wdand stress for both intact and tectonic coal follows a power law.The exponents for intact and tectonic coal are close to 2 and 1,respectively.The stress-strain curve of intact coal exhibits small deformation and linear characteristics,whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics.The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process.The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal,particularly its viscoelastic behavior.Based on experimental statistics,the calculation model of Wdwas further simplified.The simplified model involves only one unknown parameter,which is the power exponent between Wdand stress.The measured Wdof the coal samples increases with the number of load cycles.This phenomenon is attributed to coal's viscoelastic deformation.Within the same stress,the Wdof tectonic coal is an order of magnitude greater than that of intact coal.The calculation model of Wdproposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts.展开更多
The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformer...The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformers.Considering the low computational efficiency of the transformer’s numerical full model(FM),this paper presents a model simplification method based on the equivalent thermal parameters of windings to expedite hot spot temperature computation.Initially,the representative volume element(RVE)reflecting the periodic structure of windings is selected to formulate a reduced model(RM)for the transformer.Subsequently,to achieve equivalence between the RM and the FM,the equivalent thermal parameters of the RVE are calculated,containing the equivalent thermal conductivity(ETC),the equivalent density(ED),and the equivalent specific heat capacity(ESHC).Finally,the validity of the RM is verified by the temperature rise test.The results show that,compared with the tested data,the maximum error of the hot spot temperature calculated by the RM is 2.56 K,demonstrating the accuracy of the hot spot temperature calculation by the RM.Compared with the FM,the computing time of the proposed RM is reduced to 1/189,which significantly improves the computational efficiency.展开更多
[Objective] The aim was to build an optimal leaf area measurement model of E. urophylla and E. grandis×E.urophylla. [Method] The correlation between leaf area and leaf's eigenvalue of E. urophylla and E. grandis...[Objective] The aim was to build an optimal leaf area measurement model of E. urophylla and E. grandis×E.urophylla. [Method] The correlation between leaf area and leaf's eigenvalue of E. urophylla and E. grandis×E.urophylla were studied. [Result] There was certain difference in leaf characteristics values between the 2 species. The leaf areas of E. urophylla and E. grandis×E.urophylla both had significant correlation with leaf length,leaf width,leaf perimeter,leaf length × leaf width,the ratio of leaf length to leaf width,shape factor,etc.,so the factors could be constructed into a regression model with leaf area. Among them,the best 2 models for leaf area calculation which were built by leaf length × leaf width of E. urophylla and E. grandis×E.urophylla both had relatively high accuracy and practical applications. [Conclusion] The research provides a simple and effective leaf area measurement method for studies on the 2 tree species.展开更多
Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in d...Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.展开更多
Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is define...Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.展开更多
With the investigated subject of 82B rod, the interlamellar spacings of pearlite at different isothermal transformation temperatures and different cooling rates during continuous cooling transformation were measured, ...With the investigated subject of 82B rod, the interlamellar spacings of pearlite at different isothermal transformation temperatures and different cooling rates during continuous cooling transformation were measured, and the effect of the isothermal transformation temperature and cooling rate on the interlamellar spacing was analyzed quantitatively. Moreover, the relationship models between undercooling and interlamellar spacing were presented by data regression. The experimental results show that the relationship between undercooling and reciprocal interlamellar spacing remains linear when the undercooling is not very large, or else, the interlamellar spacing tends to be constant and the relationship will deviate from linearity.展开更多
On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of ...On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.展开更多
The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conducti...The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.展开更多
Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the ...Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.展开更多
This study presents a boundary-fitted grid (BFG) numerical model with an aim to simulate the tidal currents and diffusion of pollutants in complicated nearshore areas. To suit the general model to any curvilinear grid...This study presents a boundary-fitted grid (BFG) numerical model with an aim to simulate the tidal currents and diffusion of pollutants in complicated nearshore areas. To suit the general model to any curvilinear grids, generalized 2-D shallow sea dynamic equations and the advection diffusion equation are derived in curvilinear coordinates, and the contravariant components of the velocity vector are adopted for easily realizing boundary conditions and making the equations conservational. As the generalized equations are not limited by a speCific coordinate transformation. a self-adaptive grid generation method is then proposed conveniently to generate a boundary-fitted and varying SPacing grid.The calculation in the Yangpu Bay and the Xinying Bay shows that this is an effective model for calculating tidal currents and diffusion of pollutants in the more complicated nearshore areas.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental f...The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental frequency and harmonic iterative calculation method is proposed. The DC system model is derived considering the dynamic switching characteristic of converter and the steady-state response features of dc control system synchronously. And the proposed harmonic calculation method fully considers the AC/DC harmonic interaction and fault interaction under AC asymmetric fault condition. The method is used to the harmonic analysis and calculation of CIGRE HVDC system. Compared with those obtained by simulation using PSCAD/EMTDC software, the results show that the proposed model and method are accurate and effective, and provides the analysis basis of harmonic suppression, filter configuration and protection analysis in AC/DC system.展开更多
Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed ...Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.展开更多
Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dred...Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.展开更多
Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearanc...Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearance of many failures related to this type of architecture. While performing tasks, if the response time of a node in the system incomprehensibly exceeds the requirements of the specifications, the node experiences an omission failure. The task running in the failed node will be unavailable until the node resumes normal activity. Waiting not being a possible solution, many fault tolerance methods have been proposed. Despite this large number of fault tolerance methods on offer, computer grids are still prone to many failures by omission. In this work, a numerical study of the failures by omission which occur in the calculation grids during the execution of the tasks was carried out and a model allowing anticipating its failures was proposed with the formalism PDEVS (Parallel Discret EVent system Specification).展开更多
On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model...On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.展开更多
Resorting to Debye-Hückel equation, the conception of the apparent dielectric constant ε′ of sodium aluminate solution is introduced. By supposing that all the influences are attributed to it, ε′ is successfu...Resorting to Debye-Hückel equation, the conception of the apparent dielectric constant ε′ of sodium aluminate solution is introduced. By supposing that all the influences are attributed to it, ε′ is successfully related to caustic ratio αK, concentration mNaOH, T and temperature T. Then an activity coefficient calculation model for NaAl(OH)4-NaOH-H2O system from 25℃ to 100℃ is established, which can be used in much wider αK and mNaOH, T ranges than those covered by the equilibrium solubility data.展开更多
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of e...A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter P α is proposed in this model, which equals to reciprocal of activity coefficient of α component, therefore, the new model can be understood easily. By this model, the Al Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2024QN11072)National Natural Science Foundation of China(Nos.52404264 and 52174217)State Key Program of the National Natural Science Foundation of China(No.52034008)。
文摘The deformation energy(Wd)of soil-like tectonic coal is crucial for investigating the mechanism of coal and gas outbursts.Tectonic coal has a significant nonlinear constitutive relationship,which makes traditional elastic-based models for computing Wdunsuitable.Inspired by critical state soil mechanics,this study theoretically established a new calculation model of Wdsuitable for the coal with nonlinear deformation characteristics.In the new model,the relationship between energy and stress no longer follows the square law(observed in traditional linear elastic models)but exhibits a power function,with the theoretical value of the power exponent ranging between 1 and 2.Hydrostatic cyclic loading and unloading experiments were conducted on four groups of tectonic coal samples and one group of intact coal samples.The results indicated that the relationship between Wdand stress for both intact and tectonic coal follows a power law.The exponents for intact and tectonic coal are close to 2 and 1,respectively.The stress-strain curve of intact coal exhibits small deformation and linear characteristics,whereas the stress-strain curves of tectonic coal show large deformation and nonlinear characteristics.The study specifically investigates the role of coal viscosity in the cyclic loading/unloading process.The downward bending in the unloading curves can be attributed to the time-dependent characteristics of coal,particularly its viscoelastic behavior.Based on experimental statistics,the calculation model of Wdwas further simplified.The simplified model involves only one unknown parameter,which is the power exponent between Wdand stress.The measured Wdof the coal samples increases with the number of load cycles.This phenomenon is attributed to coal's viscoelastic deformation.Within the same stress,the Wdof tectonic coal is an order of magnitude greater than that of intact coal.The calculation model of Wdproposed in this paper provides a new tool for studying the energy principle of coal and gas outbursts.
基金supported by Hubei Technology Innovation Center for Smart Hydropower(SDCXZX-JJ-2023-03).
文摘The hot spot temperature of a transformer is one of the critical indicators reflecting its operating status.Accurate and fast calculation of hot spot temperature is significant for the online monitoring of transformers.Considering the low computational efficiency of the transformer’s numerical full model(FM),this paper presents a model simplification method based on the equivalent thermal parameters of windings to expedite hot spot temperature computation.Initially,the representative volume element(RVE)reflecting the periodic structure of windings is selected to formulate a reduced model(RM)for the transformer.Subsequently,to achieve equivalence between the RM and the FM,the equivalent thermal parameters of the RVE are calculated,containing the equivalent thermal conductivity(ETC),the equivalent density(ED),and the equivalent specific heat capacity(ESHC).Finally,the validity of the RM is verified by the temperature rise test.The results show that,compared with the tested data,the maximum error of the hot spot temperature calculated by the RM is 2.56 K,demonstrating the accuracy of the hot spot temperature calculation by the RM.Compared with the FM,the computing time of the proposed RM is reduced to 1/189,which significantly improves the computational efficiency.
基金Supported by Key Science and Technology Project of Forestry in Guangxi Province for the Eleventh Five-year Plan ([2009] No.8)~~
文摘[Objective] The aim was to build an optimal leaf area measurement model of E. urophylla and E. grandis×E.urophylla. [Method] The correlation between leaf area and leaf's eigenvalue of E. urophylla and E. grandis×E.urophylla were studied. [Result] There was certain difference in leaf characteristics values between the 2 species. The leaf areas of E. urophylla and E. grandis×E.urophylla both had significant correlation with leaf length,leaf width,leaf perimeter,leaf length × leaf width,the ratio of leaf length to leaf width,shape factor,etc.,so the factors could be constructed into a regression model with leaf area. Among them,the best 2 models for leaf area calculation which were built by leaf length × leaf width of E. urophylla and E. grandis×E.urophylla both had relatively high accuracy and practical applications. [Conclusion] The research provides a simple and effective leaf area measurement method for studies on the 2 tree species.
基金Project (09001232) supported by the Doctoral Foundation of Henan University of Science and Technology,China
文摘Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite.
文摘Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude.
文摘With the investigated subject of 82B rod, the interlamellar spacings of pearlite at different isothermal transformation temperatures and different cooling rates during continuous cooling transformation were measured, and the effect of the isothermal transformation temperature and cooling rate on the interlamellar spacing was analyzed quantitatively. Moreover, the relationship models between undercooling and interlamellar spacing were presented by data regression. The experimental results show that the relationship between undercooling and reciprocal interlamellar spacing remains linear when the undercooling is not very large, or else, the interlamellar spacing tends to be constant and the relationship will deviate from linearity.
基金Item Sponsored by National Natural Science Foundation of China(50974143)
文摘On the basis of the existing originally modified calculation models of theoretical combustion temperature(TCT),some factors,such as the combustion ratio of pulverized coal injection(PCI),the decomposition heat of PCI and the heat consumption of SiO2 in ash reduced in high temperature environment,were amended and improved to put forward a more comprehensive model for calculating TCT.The influences of each improvement on TCT were studied and the results were analyzed compared with those of traditional model and originally modified model,which showed that the present model could reflect the thermal state of a hearth more effectively.
文摘The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.
文摘Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.
文摘This study presents a boundary-fitted grid (BFG) numerical model with an aim to simulate the tidal currents and diffusion of pollutants in complicated nearshore areas. To suit the general model to any curvilinear grids, generalized 2-D shallow sea dynamic equations and the advection diffusion equation are derived in curvilinear coordinates, and the contravariant components of the velocity vector are adopted for easily realizing boundary conditions and making the equations conservational. As the generalized equations are not limited by a speCific coordinate transformation. a self-adaptive grid generation method is then proposed conveniently to generate a boundary-fitted and varying SPacing grid.The calculation in the Yangpu Bay and the Xinying Bay shows that this is an effective model for calculating tidal currents and diffusion of pollutants in the more complicated nearshore areas.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
文摘The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental frequency and harmonic iterative calculation method is proposed. The DC system model is derived considering the dynamic switching characteristic of converter and the steady-state response features of dc control system synchronously. And the proposed harmonic calculation method fully considers the AC/DC harmonic interaction and fault interaction under AC asymmetric fault condition. The method is used to the harmonic analysis and calculation of CIGRE HVDC system. Compared with those obtained by simulation using PSCAD/EMTDC software, the results show that the proposed model and method are accurate and effective, and provides the analysis basis of harmonic suppression, filter configuration and protection analysis in AC/DC system.
文摘Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.
基金Supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China(No. 50879056)National Key Technologies R&D Program in the 12th Five-Year Plan of China(No. 2011BAB10B06)
文摘Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.
文摘Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearance of many failures related to this type of architecture. While performing tasks, if the response time of a node in the system incomprehensibly exceeds the requirements of the specifications, the node experiences an omission failure. The task running in the failed node will be unavailable until the node resumes normal activity. Waiting not being a possible solution, many fault tolerance methods have been proposed. Despite this large number of fault tolerance methods on offer, computer grids are still prone to many failures by omission. In this work, a numerical study of the failures by omission which occur in the calculation grids during the execution of the tasks was carried out and a model allowing anticipating its failures was proposed with the formalism PDEVS (Parallel Discret EVent system Specification).
文摘On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.
基金Project(50274076) supported by the National Natural Science Foundation of China project(G1999064910) supported bythe National Basic Research Programof China
文摘Resorting to Debye-Hückel equation, the conception of the apparent dielectric constant ε′ of sodium aluminate solution is introduced. By supposing that all the influences are attributed to it, ε′ is successfully related to caustic ratio αK, concentration mNaOH, T and temperature T. Then an activity coefficient calculation model for NaAl(OH)4-NaOH-H2O system from 25℃ to 100℃ is established, which can be used in much wider αK and mNaOH, T ranges than those covered by the equilibrium solubility data.
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
文摘A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the parameter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter P α is proposed in this model, which equals to reciprocal of activity coefficient of α component, therefore, the new model can be understood easily. By this model, the Al Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.