Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptabilit...Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.展开更多
Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,b...Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.展开更多
Supramolecular materials,characterized by dynamic reversibility and responsiveness to environmental stimuli,have found widespread applications in numerous fields.Unlike traditional materials,supramolecular materials t...Supramolecular materials,characterized by dynamic reversibility and responsiveness to environmental stimuli,have found widespread applications in numerous fields.Unlike traditional materials,supramolecular materials that rely on non-covalent interactions can allow spontaneous reorganization and self-healing at room temperature.However,these materials typically exhibit low strength due to the weak bonding energies of non-covalent interactions.This study presents the development of a high-strength self-healing supramolecular material that combines multiple interactions including ionic bonding,hydrogen bonding,and coordination bonding.The material,formed by the aggregation of the negatively charged picolinate-grafted copolymer(PCM)with positively charged hyperbranched molecules(HP),is further enhanced by Eu^(3+)ion complexation.The resulting film exhibits a high modulus of 427 MPa,tensile strength of 10.5 MPa,and toughness of 14.7 MJ m^(−3).Meanwhile,the non-covalent interaction of this supramolecular material endows it with a self-healing efficiency of 92%within 24 h at room temperature,as well as multiple remolding properties.The incorporation of lanthanide ions also imparts tunable fluorescence.This study not only provides insights into the development of high-strength self-healing materials but also offers new possibilities for the functionalization of supramolecular materials.展开更多
The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary condition...The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research.展开更多
The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in ...The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].展开更多
In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through elec...In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through electrocatalysis powered by renewable electricity exhibits great potential.However,the electroreduction of CO_(2) heavily relies on efficient catalysts to overcome the required energy barrier due to the high stability of CO_(2).p-block metal-based MOFs and MOF-derived catalysts have been proven to be efficient catalysts for electrochemical CO_(2) reduction reaction(CO_(2)RR)due to their unique electronic structure and clear active sites.However,factors such as conductivity and stability limit the practical application of p-block metal-based MOFs and MOF-derived catalysts.In this review,we summarize the latest progress of MOFs and MOF-derived catalysts based on typical p-block metals in the field of CO_(2)RR.Then the modification strategies for MOFs-based catalysts and the related catalytic mechanism are briefly introduced.Furthermore,we offer the challenges and prospects of p-block metal-based MOFs and MOF-derived catalysts in the hope of providing guidance for potential applications.展开更多
Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of lum...Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of luminescent materials.In recent years,the novel macrocyclic arenes characterized by unique electron-rich structures,ease of derivatization,tunable conformations and even inherent luminescence properties afford much opportunities to create such dynamic smart luminescent materials.The incorporation of macrocyclic arenes into SLMs leads to simple preparation process,diverse photophysical phenomena and sophisticated regulatory mechanisms,which is also currently one of the most frontier and hot topics in macrocyclic and supramolecular chemistry and even luminescent materials.In this review,the research advances in construction and applications of SLMs based on macrocyclic arenes in the last several years will be presented from the different assembly strategies,including host-vip complexes,supramolecular polymers,nanoparticles,and other assemblies.Moreover,some insights into future directions for this research area will also be offered.展开更多
Investigating thermal transport mechanisms at the interface between phase change materials(PCMs)and high thermally conductive fillers has become increasingly significant in developing phase change energy storage techn...Investigating thermal transport mechanisms at the interface between phase change materials(PCMs)and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies.This study explores the interfacial thermal transport between a representative PCM,erythritol,and various fillers,including crystalline(Si C,Si_(3)N_(4))and amorphous(Si O_(2))nanoparticles,using molecular dynamics(MD)simulations.Additionally,time-domain thermoreflectance(TDTR)experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers,yielding values of 50.1,40.0,and25.6 MW m^(–2)K^(-1).These results align well with the trends observed in the simulations.Furthermore,the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states,overlap energy,and interaction energy.This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs.This could lead to significant advancements in thermal management technologies,particularly in developing more efficient thermal energy storage systems.展开更多
Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforce...Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.展开更多
Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully construct...Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade...Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte...The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).展开更多
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ...High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.展开更多
Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic a...Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.展开更多
Environmental pollution is one of the most serious problems facing mankind today,and has attracted widespread attention worldwide. The burgeoning class of crystalline porous organic framework materials, metal–organic...Environmental pollution is one of the most serious problems facing mankind today,and has attracted widespread attention worldwide. The burgeoning class of crystalline porous organic framework materials, metal–organic frameworks and covalent organic frameworks present promising application potential in areas related to pollution control due to their interesting surface properties. In this review, the literature of the past five years on the adsorptive removal of various hazardous materials, mainly including heavy metal ions, harmful gases, organic dyes, pharmaceutical and personal care products, and radionuclides from the environment by using COFs and MOFs, is summarized. The adsorption mechanisms are also discussed to help understand their adsorption performance and selectivity. Additionally, some insightful suggestions are given to enhance the performance of MOFs and COFs in the adsorptive removal of various hazardous materials.展开更多
Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further...Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further study. In this paper, a series of ceramics with different slag ratios (0-70wt%) were designed, and the software FACTsage was introduced to simulate the formation of crystalline phases. The simulation results indicate that mullite is generated but drastically reduced at the slag ratios of 0-25wt%, and anorthite is the dominant crystalline phase in the slag content of 25wt%-45wt%. When the slag ratio is above 45wt%, pyroxene is generated more than anorthite. This is because increasing magnesium can promote the formation of pyroxene. Then, the formula with a slag content of 40wt% was selected and optimized. X-ray diffraction results were good consistent with the simulation results. Finally, the water absorption and bending strength of optimized samples were measured.展开更多
基金the National Key R&D Program of China(No.2023YFE0208700)National Natural Sci-ence Foundation of China(No.92163109 and 52072095)+7 种基金Shenzhen Science and Technology Program(No.RCJC20231211090000001,GXWD20231129101105001)the National Natural Science Foundation of China(No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)the Start-up Research Fund of Southeast University(No.RF1028623098)the State Key Laboratory of Robotics and Systems(HIT)(No.SKLRS-2024-KF-11)National Natural Science Foundation of China(No.52202348)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011491)Shenzhen Science and Technology Program(Nos.GXWD20220818224716001,KJZD20231023100302006).
文摘Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.
基金funding support by the National Science Foundation(NSF)under grant numbers CBET-2110603the Air Force Office of Scientific Research(AFOSR)under contract number FA9550-12-1-0225supported by the State of North Carolina and the National Science Foundation(award number ECCS-2025064).
文摘Thermoelectric materials,capable of converting temperature gradients into electrical power,have been traditionally limited by a trade-off between thermopower and electrical conductivity.This study introduces a novel,broadly applicable approach that enhances both the spin-driven thermopower and the thermoelectric figure-of-merit(zT)without compromising electrical conductivity,using temperature-driven spin crossover.Our approach,supported by both theoretical and experimental evidence,is demonstrated through a case study of chromium doped-manganese telluride,but is not confined to this material and can be extended to other magnetic materials.By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature-driven spin crossover,we achieved a significant increase in thermopower,by approximately 136μV K^(-1),representing more than a 200%enhancement at elevated temperatures within the paramagnetic domain.Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon-drag thermopower is key to understanding and utilizing spin crossover-driven thermopower.These findings,validated by inelastic neutron scattering,X-ray photoemission spectroscopy,thermal transport,and energy conversion measurements,shed light on crucial material design parameters.We provide a comprehensive framework that analyzes the interplay between spin entropy,hopping transport,and magnon/paramagnon lifetimes,paving the way for the development of high-performance spin-driven thermoelectric materials.
基金supported by Zhejiang Provincial Natural Science Foundation of China under(LD22A020002)National Natural Science Foundation of China(52473116,22322508)+1 种基金International Cooperation Project of Ningbo City(2023H019)the Sino-German mobility program(M-0424).
文摘Supramolecular materials,characterized by dynamic reversibility and responsiveness to environmental stimuli,have found widespread applications in numerous fields.Unlike traditional materials,supramolecular materials that rely on non-covalent interactions can allow spontaneous reorganization and self-healing at room temperature.However,these materials typically exhibit low strength due to the weak bonding energies of non-covalent interactions.This study presents the development of a high-strength self-healing supramolecular material that combines multiple interactions including ionic bonding,hydrogen bonding,and coordination bonding.The material,formed by the aggregation of the negatively charged picolinate-grafted copolymer(PCM)with positively charged hyperbranched molecules(HP),is further enhanced by Eu^(3+)ion complexation.The resulting film exhibits a high modulus of 427 MPa,tensile strength of 10.5 MPa,and toughness of 14.7 MJ m^(−3).Meanwhile,the non-covalent interaction of this supramolecular material endows it with a self-healing efficiency of 92%within 24 h at room temperature,as well as multiple remolding properties.The incorporation of lanthanide ions also imparts tunable fluorescence.This study not only provides insights into the development of high-strength self-healing materials but also offers new possibilities for the functionalization of supramolecular materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.22072031,12372107,11832010,and 11890682)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000).
文摘The bulge test is a widely utilized method for assessing the mechanical properties of thin films,including metals,polymers,and semiconductors.However,as film thickness diminishes to nanometer scales,boundary conditions dominated by weak van der Waals forces significantly impact mechanical responses.Instead of sample fracture,interfacial shear deformation and delamination become the primary deformation modes,thereby challenging the applicability of conventional bulge models.To accommodate the interfacial effect,a modified mechanical model based on the bulge test has been proposed.This review summarizes recent advancements in the bulge test to highlight the potential challenges and opportunities for future research.
基金supported by the National Natural Science Foundation of China(22101043)the Fundamental Research Funds for the Central Universities(N2205013,N232410019,N2405013)+3 种基金Natural Science Foundation of Liaoning Province(2023-MSBA-068)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLHOP202203006)the Key Laboratory of Functional Molecular Solids,Ministry of Education(FMS2023005)Northeastern University。
文摘The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].
基金supported by the National Natural Science Foundation of China(Nos.22061019 and 22261021)the Jiangxi Provincial Natural Science Foundation(Nos.20224BAB203002,20232ACB203018,20232BAB203005,and 20224BAB213001)+5 种基金the Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry(No.2024SSY05161)the Ganzhou Key Research and Development Program(No.2023PNS26963)the Youth Jinggang Scholars Program in Jiangxi Province(No.QNJG2019053)the Two Thousand Talents Program in Jiangxi Province(No.jxsq2019201068)the Doctor’s Starting Research Foundation of Jiangxi University of Science and Technology(No.205200100597)the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ2200860).
文摘In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through electrocatalysis powered by renewable electricity exhibits great potential.However,the electroreduction of CO_(2) heavily relies on efficient catalysts to overcome the required energy barrier due to the high stability of CO_(2).p-block metal-based MOFs and MOF-derived catalysts have been proven to be efficient catalysts for electrochemical CO_(2) reduction reaction(CO_(2)RR)due to their unique electronic structure and clear active sites.However,factors such as conductivity and stability limit the practical application of p-block metal-based MOFs and MOF-derived catalysts.In this review,we summarize the latest progress of MOFs and MOF-derived catalysts based on typical p-block metals in the field of CO_(2)RR.Then the modification strategies for MOFs-based catalysts and the related catalytic mechanism are briefly introduced.Furthermore,we offer the challenges and prospects of p-block metal-based MOFs and MOF-derived catalysts in the hope of providing guidance for potential applications.
基金the National Natural Science Foundation of China(Nos.22171272,22031010)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0520302)the Youth Innovation Promotion Association CAS(No.2021035)for financial support。
文摘Supramolecular luminescent materials(SLMs)exhibit exceptional luminescence properties and the ability to be intelligently regulated through diverse assembly approaches,making them highly attractive in the field of luminescent materials.In recent years,the novel macrocyclic arenes characterized by unique electron-rich structures,ease of derivatization,tunable conformations and even inherent luminescence properties afford much opportunities to create such dynamic smart luminescent materials.The incorporation of macrocyclic arenes into SLMs leads to simple preparation process,diverse photophysical phenomena and sophisticated regulatory mechanisms,which is also currently one of the most frontier and hot topics in macrocyclic and supramolecular chemistry and even luminescent materials.In this review,the research advances in construction and applications of SLMs based on macrocyclic arenes in the last several years will be presented from the different assembly strategies,including host-vip complexes,supramolecular polymers,nanoparticles,and other assemblies.Moreover,some insights into future directions for this research area will also be offered.
基金supported by the National Natural Science Foundation of China(Nos.52222602,and52236006)the Fundamental Research Funds for the Central Universities(Nos.FRF-EYIT-23-05,and FRF-TP-22-001C1)+1 种基金Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0500902)the member of the Youth Innovation Promotion Association Foundation of CAS,China(No.2023310)。
文摘Investigating thermal transport mechanisms at the interface between phase change materials(PCMs)and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies.This study explores the interfacial thermal transport between a representative PCM,erythritol,and various fillers,including crystalline(Si C,Si_(3)N_(4))and amorphous(Si O_(2))nanoparticles,using molecular dynamics(MD)simulations.Additionally,time-domain thermoreflectance(TDTR)experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers,yielding values of 50.1,40.0,and25.6 MW m^(–2)K^(-1).These results align well with the trends observed in the simulations.Furthermore,the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states,overlap energy,and interaction energy.This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs.This could lead to significant advancements in thermal management technologies,particularly in developing more efficient thermal energy storage systems.
基金supported by the National Natural Science Foundation of China(Grant No.52106089)the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)。
文摘Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.
文摘Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.
文摘Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the Low-Cost Long-Life Batteries program,China(No.WL-24-08-01)the National Natural Science Foundation of China(No.22279007)。
文摘The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)).
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2022HZ027006,No.2024HZ021023)National Natural Science Foundation of China(No.U22A20118).
文摘High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
基金financially supported by the National Natural Science Foundation of China(Nos.22350410391 and 22001094)the Research Initiation Fund Project from Zhejiang Sci-Tech University(No.23212072-Y).
文摘Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.
基金supported by the National Natural Science Foundation of China (No. 21806083)the National Key R&D Program of China (No. 2018YFD0400703)+1 种基金the 111 Program of the Ministry of Education, China (No. T2017002)the Fundamental Research Funds for the Central Universities
文摘Environmental pollution is one of the most serious problems facing mankind today,and has attracted widespread attention worldwide. The burgeoning class of crystalline porous organic framework materials, metal–organic frameworks and covalent organic frameworks present promising application potential in areas related to pollution control due to their interesting surface properties. In this review, the literature of the past five years on the adsorptive removal of various hazardous materials, mainly including heavy metal ions, harmful gases, organic dyes, pharmaceutical and personal care products, and radionuclides from the environment by using COFs and MOFs, is summarized. The adsorption mechanisms are also discussed to help understand their adsorption performance and selectivity. Additionally, some insightful suggestions are given to enhance the performance of MOFs and COFs in the adsorptive removal of various hazardous materials.
基金financially supported by the National Natural Science Foundation of China (Nos. 51034008 and 51004012)the National High Technology Research and Development Program of China (No. 2011AA06A105)
文摘Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further study. In this paper, a series of ceramics with different slag ratios (0-70wt%) were designed, and the software FACTsage was introduced to simulate the formation of crystalline phases. The simulation results indicate that mullite is generated but drastically reduced at the slag ratios of 0-25wt%, and anorthite is the dominant crystalline phase in the slag content of 25wt%-45wt%. When the slag ratio is above 45wt%, pyroxene is generated more than anorthite. This is because increasing magnesium can promote the formation of pyroxene. Then, the formula with a slag content of 40wt% was selected and optimized. X-ray diffraction results were good consistent with the simulation results. Finally, the water absorption and bending strength of optimized samples were measured.