A great attention has been paid to the research and development of nanostructured materials.The main preparation methods of ultrafine particles and nanostructured materials have been summarized. The applications of zo...A great attention has been paid to the research and development of nanostructured materials.The main preparation methods of ultrafine particles and nanostructured materials have been summarized. The applications of zone typical nanostructured materials have also been reviewed.The peculiar characteristics and properties. such as density, grain size, hardness, superplasticity,magnetic and catalytic properties have been discussed展开更多
By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) c...By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) can be attained in materials through a martensitic transformation and its reverse transformation. only when there forms single or nearly single variant of martensite, with an absence of the factors causing the generation of the resistance against SME. on this principle, various shape memory materials including nonferrous alloys. iron-based alloys and ceramics containjng zirconia are expected to be further developed. A criterion for thermoelastic martensitic transformation is presented, Factors which may act as the resistance against SME in various materials are briefly described展开更多
Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this p...Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.展开更多
文摘A great attention has been paid to the research and development of nanostructured materials.The main preparation methods of ultrafine particles and nanostructured materials have been summarized. The applications of zone typical nanostructured materials have also been reviewed.The peculiar characteristics and properties. such as density, grain size, hardness, superplasticity,magnetic and catalytic properties have been discussed
文摘By consideration of the characteristics of martensitic transformation and the derivation from the application of the group theory to martensitic transformation, it may be concluded that the shape memory effect (SME) can be attained in materials through a martensitic transformation and its reverse transformation. only when there forms single or nearly single variant of martensite, with an absence of the factors causing the generation of the resistance against SME. on this principle, various shape memory materials including nonferrous alloys. iron-based alloys and ceramics containjng zirconia are expected to be further developed. A criterion for thermoelastic martensitic transformation is presented, Factors which may act as the resistance against SME in various materials are briefly described
基金“Grassland Talents”of Inner Mongolia Autonomous Region,Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23030)Technology Breakthrough Engineering Hydrogen Energy Field“Unveiling and Leading”Project(2024KJTW0018)+3 种基金“Steed Plan High Level Talents”of Inner Mongolia University,Carbon neutralization research project(STZX202218)National Natural Science Foundation of China(U22A20107),Inner Mongolia Autonomous Region Natural Science Foundation(2023MS02002)Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC2024KF011)National Key R&D Program of China(2022YFA1205201).
文摘Anion exchange membrane(AEM),as a kind of key membrane materials,has shown great application potential in many electrochemical fields,and remarkable progress has been made in related research in recent years.In this paper,the research status of AEM is reviewed,including its material design,preparation method,performance optimization and application in the fields of hydrogen production by electrolytic water,fuel cell and water treatment.In terms of material design,new polymer skeleton structures are emerging to regulate the stability of ion conduction channels and membranes by introducing specific functional groups or changing the molecular chain structure.The preparation methods have been gradually expanded from the traditional solution casting method to more advanced technologies,such as interfacial polymerization and electrostatic spinning,which effectively improve the microstructure and property uniformity of the film.Performance optimization focuses on improving ion conductivity,reducing membrane swelling rate and enhancing chemical stability,and a variety of modification strategies are developed and applied.Despite the achievements made so far,there are still some challenges,such as the lack of long-term stability in highly alkaline environments.Future research needs to further explore new material systems and preparation processes in order to promote the wide application and sustainable development of AEM technology in energy,environmental protection and other fields.